

Nova Scotia Lands Inc.

2020 ANNUAL GROUNDWATER QUALITY MONITORING REPORT TRENTON COMMERCIAL PARK, CIVIC NO. 34 POWER PLANT ROAD, TRENTON, NS

R. hu.

Prepared by:

Approved by:

Ryan Pellerin, B.Sc., A.Sc.T. Project Manager Environmental Engineering

Robert Bekkers, M.Sc., P.Geo. Site Professional

Executive Summary

At the request of Nova Scotia Lands Inc. (NS Lands), Englobe Corp. (Englobe) conducted groundwater sampling events in May and October 2020 including the sampling and testing of seven (7) specified groundwater monitor wells with interpretation of the analytical results in an annual report. Toxicity testing of surface water collected at three (3) locations adjacent to the facility was also carried out in May 2020. This work was completed as per details outlined in Section 4 (Groundwater Monitoring) of the Nova Scotia Environment (NSE) Industrial Approval No. 2020-2690529-00.

Based on the field observations and analytical results obtained, we make the following conclusions and statements on the identification of any groundwater or surface water discharge impacts as a result of site activities during the 2020 calendar year:

- The concentration of modified total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylenes (BTEX) in groundwater collected from the seven monitoring wells did not exceed the NSE Approval criteria in May or October 2020.
- The pH values collected from the seven monitoring wells at Trenton Commercial Park were reported to be within the range specified in the NSE Approval.
- Concentrations of iron in monitoring wells MW1, MW3 (in October), and MW11 exceeded both the maximum grab sample concentration limit and the average annual concentration limit. The reason for the elevated iron concentrations at MW1, MW3 and MW11 is unknown.
- Concentrations of manganese in monitoring wells MW1, MW3, and MW4 exceeded both the maximum grab sample concentration limit and the average annual concentration limit. MacGregor (June 2013) reported similar manganese concentrations at these locations dating back to at least April 2003, suggesting that elevated manganese concentrations may be the result of historic buried fill materials on site.
- All remaining parameters that require monitoring by NSE have been documented to satisfy the limits or are within the ranges stipulated by NSE under Approval No. 2020-2690529-00.
- Concentrations of several volatile organic compounds (VOCs) in groundwater collected at monitoring well MW6 in May and October 2020 were reported above the laboratory detection limit. There are no NSE Approval limits for VOCs specified in the NSE Approval. The reported VOC concentrations satisfy the NSE Tier 1 EQS. The source of VOCs is likely not from site activities, as monitoring well MW6 is considered an upgradient well.

In conclusion, the annual groundwater sampling from 2020 has not identified any impacts resulting from on-site activities. Additional site work regarding petroleum hydrocarbons impacts at MW1 and continued sampling for VOCs at MW6 are recommended.

The next monitoring event is scheduled for April 2021 and will be conducted by Englobe using the sampling methodology discussed herein.

Production Team

Client

Nova Scotia Lands Inc.

Mr. Cory MacPhee

Englobe Corp.

Project Manager	Ryan Pellerin, B.Sc., A.Sc.T.
Site Professional	Robert Bekkers, M.Sc., P.Geo.
Site Assessor	Adam Clarke, B.Sc. Geo.
Report Preparation	Natalie Zwanenburg, M.Sc., GIT

	Revision and Publication Register											
Revision N° Date Modification and/or Publication Details												
00	2021-01-28	Draft Report Issued										
01	2021-02-23	Final Report Issued										

Property and Confidentiality

"This report can only be used for the purposes stated therein. Any use of the report must take into consideration the object and scope of the mandate by virtue of which the report was prepared, as well as the limitations and conditions specified therein and the state of scientific knowledge at the time the report was prepared. Englobe Corp. provides no warranty and makes no representations other than those expressly contained in the report.

This document is the work product of Englobe Corp. Any reproduction, distribution or adaptation, partial or total, is strictly forbidden without the prior written authorization of Englobe and its Client. For greater certainty, use of any and all extracts from the report is strictly forbidden without the written authorization of Englobe and its Client, given that the report must be read and considered in its entirety.

No information contained in this report can be used by any third party without the prior written authorization of Englobe and its Client. Englobe Corp. disclaims any responsibility or liability for any unauthorized reproduction, distribution, adaptation or use of the report.

If tests have been carried out, the results of these tests are valid only for the sample described in this report.

Englobe's subcontractors who have carried out on-site or laboratory work are duly assessed according to the purchase procedure of our quality system. For further information, please contact your project manager."

Table of Contents

1	INTRODUCTION
2	BACKGROUND1
3	SCOPE OF WORK
4	METHODOLOGY
5	FIELD OBSERVATIONS
6	GROUNDWATER ANALYTICAL RESULTS5
6.1	TPH/BTEX Compounds5
6.2	Conductivity and pH6
6.3	Metals6
	6.3.1 Arsenic
	6.3.2 Iron
	6.3.3 Lead
	6.3.4 Manganese
	6.3.5 Zinc7
6.4	VOCs7
7	TOXICITY TESTING RESULTS
8	CONCLUSIONS
9	REPORT USE AND CONDITIONS

Tables

 Table 5-1 - Groundwater Levels and Field Observations - DSME Trenton, Civic No. 34 Power

 Plant Road, Trenton, NS

Appendices

Appendix A Site Map Showing Monitor Well and Surface Water Sampling LocationsAppendix B Tabulated Analytical ResultsAppendix C Laboratory Certificates

1 Introduction

Englobe Corp. (Englobe) was retained by Nova Scotia Lands Inc. (NS Lands) to undertake semi-annual groundwater monitoring and annual toxicity testing for the Trenton Commercial Park in Trenton, Nova Scotia. The purpose of the work herein by Englobe is to satisfy requirements set out by Nova Scotia Environment (NSE) in their Approval 2020-2690529-00 (dated September 21, 2020). The groundwater program includes semi-annual sampling of seven (7) existing groundwater monitoring wells, laboratory testing for predetermined parameters, interpretation of results and publishing of the data with recommendations as required in an annual report as per Section 4 (Groundwater Monitoring – subsections 4(a), 4(b) and 4(e)). The annual toxicity testing includes the collection of toxicity samples from three (3) pre-assigned surface water sampling locations as per Section 5 (subsection 5(c) - toxicity testing only, and 5(d)) of the NSE Approval. A site plan showing the Trenton Commercial Park site, monitor well locations and toxicity sample locations is provided in Figure 1 (Appendix A).

The Trenton Commercial Park site is located at Civic No. 34 Power Plant Road on the eastern bank of the East River of Pictou County in Trenton, Nova Scotia. It has an approximate area of 0.4 square kilometres and extends almost 1.6 kilometers from end to end. The site is located on the west side of Main Street and the main Canadian National Railway (CNR) rail line and extends adjacent to the waters of the East River. The site slopes downward toward the westnorthwest in the southern portion of the site, and toward the northeast in the northern reaches. Groundwater flow direction typically follows topography. Regional groundwater flow direction is northwest toward the East River.

Trenton Commercial Park has a history of industrial operations from 1872 until 2016 including steel mill and forge operations, shipbuilding, and wind tower production. The site has operated under several names throughout the years including Hope Iron Works, Nova Scotia Steel Company, Eastern Car Company, DOSCO, Hawker Siddeley Canada Inc., Trenton Works Lavalin Inc., TrentonWorks, and Daewoo Shipbuilding and Marine Engineering (DSME) Trenton; however, the collective legacy industrial lands inhabiting all of these former operations is currently named Trenton Commercial Park. There have been significant changes at the site throughout recent history including the closure of site operations in 2008, and the Industrial Approval for operation of a wind turbine manufacturing facility in 2010; the wind turbine facility ceased operations in February 2016.

2 Background

As discussed by MacGregor and Associates (MacGregor) in their Data Report: Groundwater and Discharge Monitoring - May 2013 - DSTN DSME TRENTON report (dated June 25, 2013), the property at 34 Power Plant Road was used as a railcar manufacturing facility operated by numerous owners from 1875 to May 2007. Between May 2007 and July 2010, the site was closed due to bankruptcy and managed by Ernst Young of Halifax, and in July 2010 DSME Trenton acquired the property from the Province of Nova Scotia. Since then, closure of the Nova Forge site, which shared a portion of the former TrentonWorks property with DSME Trenton, due to a large fire on January 24, 2012, was announced in December 2012. DSME Trenton obtained an Industrial Approval from NSE for 'operating a Windmill Manufacturing Facility where an anodizing process will be carried out' (effective January 1, 2013 and expiry February 27, 2018). We understand that, although the wind turbine facility is no longer in operation and the site was acquired by NS Lands, NS Lands is now responsible for fulfilling the monitoring requirements of the NSE Approval. The NSE Approval has been reissued under Approval No. 2020-2690526-00 on September 21, 2020, valid through September 21, 2030.

Monthly discharge and semi-annual groundwater monitoring have been conducted on the site since 1996. Previous monitoring at the site has been largely conducted by MacGregor, and their annual reports have been provided to the property owner and to NSE. Since the mid-2000s, Englobe has reviewed many of these historical reports and has been provided the report from MacGregor (June 2013) for our files. Englobe completed the 2014 annual groundwater quality monitoring report for DSME Trenton, which contained data from the 2013 groundwater and toxicity sampling (dated February 4, 2014) and included the MacGregor report as an appendix in the report.

The June 2013 MacGregor report also included analytical results and discussion of effluent sampling at TW1, TW3 and TW4 (April and May 2013) as well as annual toxicity monitoring. These results are required as per Sections 5(c) and 5(d) of the NSE Approval and were provided in Appendix 2 of the 2013 MacGregor report. However, additional monitoring of TW1, TW3 and TW4 has reportedly been conducted by DSME Trenton personnel and, apart from the annual toxicity testing results, are not included in this 'Groundwater Quality Monitoring' report by Englobe.

Englobe has completed annual groundwater quality monitoring and reporting from 2014-2018 for the former property owner, DSME Trenton, as well as for NS Lands. The annual groundwater sampling events have historically been conducted in April and October and included the sampling and testing of seven specified groundwater monitor wells with interpretation of the analytical results in an annual report. Toxicity testing of surface water collected at TW1, TW3 and TW4 has also been carried out during the April events. The work was completed to satisfy Section 4 (Groundwater Monitoring) of DSME Trenton's NSE Industrial Approval No. 2010-072182-R02.

Based on the field observations and analytical results obtained during the most recent year of monitoring in 2018, the following conclusions and statements on the identification of any groundwater or surface water discharge impacts as a result of site activities during the 2018 calendar year were made:

- The concentration of modified total petroleum hydrocarbons (TPH) in groundwater collected from MW1 in October 2018 was equal to, but did not exceed, the NSE Approval criteria.
- One of the groundwater monitoring wells (MW2) was located in an area of the site that was upgraded in 2011, and reportedly decommissioned. Englobe was unable to locate this well at the time of the site visit. For this reason, no groundwater samples were collected from this location in 2018.
- Concentrations of iron in groundwater at monitoring wells MW1, MW3, and MW11 exceeded both the maximum grab sample concentration limit and the average annual concentration limit. The reason for the elevated iron concentrations at MW1, MW3 and MW11 is unknown.
- Concentrations of manganese in monitoring wells MW1 and MW4 exceeded both the maximum grab sample concentration limit and the average annual concentration limit. Concentrations of manganese in monitoring wells MW3 and MW14 exceeded the average annual concentration limit. MacGregor (June 2013) reported similar manganese concentrations at these locations dating back to at least April 2003. They suggested that elevated manganese concentrations may be the result of buried fill materials on the site.
- All remaining parameters that require monitoring by NSE have been documented to satisfy the limits or are within the ranges stipulated by NSE under Approval No. 2010-072182-R02.

Concentrations of several volatile organic compounds (VOCs) in groundwater collected at monitoring well MW6 in April and October 2018 were reported above the laboratory detection limits. There are no NSE Approval limits for VOCs specified in the industrial approval for the site. The reported VOC concentrations satisfy the NSE Tier 1 Environmental Quality Standards (EQS). The source of VOCs is likely not from activities at the Trenton Commercial Park site, as monitoring well MW6 is considered an upgradient well.

It was concluded that the annual groundwater sampling from 2018 did not identify any impacts resulting from on-site activities. Additional site work regarding the petroleum hydrocarbon impacts at MW1 and continued sampling for VOCs at MW6 were recommended as part of the annual monitoring program.

3 Scope of Work

The purpose of the current work by Englobe is to satisfy requirements set out by NSE in Section 10 (Groundwater Monitoring – subsections 10(a), 10(b) and 10(f)) and Section 7 (subsection 7(b) – toxicity testing only, and 7(c)) of the Approval 2020-2690529-00 (dated September 21, 2020). In the Request for Proposals from NS Lands, it specified that seven (7) groundwater monitoring wells and three (3) surface water (effluent) locations are to be sampled, followed by laboratory testing for the predetermined parameters on the samples. Interpretation of the analytical results are to be provided in an annual report as per details outlined in selected portions of Section 10 and Section 7 of the Industrial Approval from the NSE (Approval 2020-2690529-00, dated September 21, 2020).

Section 10 of the NSE Approval specifies that seven (7) groundwater monitoring stations identified as MW1, MW3, MW4, MW6, MW9, MW11, and MW14 shall be monitored twice annually, April and October, for the following parameters (as listed in Appendix 1 of the NSE Industrial Approval):

- Conductivity and pH;
- Total petroleum hydrocarbons (TPH); and
- Metals parameters including iron, zinc, manganese, lead, and arsenic.

According to MacGregor (2013), the groundwater monitoring location identified as MW2 was decommissioned with the approval of NSE in the summer of 2011. Therefore, monitoring well MW2 has not been sampled as part of Englobe's monitoring events since April 2014.

Section 5 of the NSE Approval specifies that acute toxicity shall be monitored on an annual basis during the month of April at the following locations:

- TW-1 (North Weir Discharge);
- TW-3 (Outfall at East River); and
- ► TW-4 (Theilacker Crane Discharge).

The annual report shall summarize and interpret the groundwater monitoring data and identify any impacts as a result of site activities (during the previous calendar year).

Halocarbons, a class of VOC, was reported by the laboratory in both groundwater samples collected from monitoring well MW6 in 2013. Additional VOC analysis at MW6 was recommended in 2014 but was not approved. TPH and benzene, toluene, ethylbenzene and xylene (BTEX) testing from both events in 2014 and 2015 did not report any halocarbon detections in the groundwater. VOCs were detected in the groundwater at MW6 during the October 2016 sampling event and the spring and fall sampling events in 2017 and 2018; the concentrations identified during these events satisfied the NSE Tier 1 EQS. There are no NSE Approval limits for VOCs specified in the Industrial Approval for the site. VOC assessment in groundwater at MW6 was continued in 2020.

4 Methodology

On May 28 and October 28, 2020 Englobe personnel conducted monitoring of the specified groundwater wells for static water level and accessed each well for the purpose of sampling for laboratory testing.

Static water levels were measured using a Solinist electronic water level tape. Wells were purged of three well volumes (with Waterra tubing, which was located in some wells, or a new, factory wrapped groundwater bailer) and left to recover. For collection of the water samples for laboratory testing, a 1-litre (1.5" diameter) clear dedicated PVC bailer was installed in each well to retrieve the groundwater samples. A site plan showing the location of the monitoring wells is provided in Figure 1 (Appendix A). Note: additional monitoring wells may be present at the Trenton Commercial Park site; however, they are not shown on the attached plan.

In accordance with laboratory protocols, groundwater samples were collected for metals, conductivity, pH, TPH/BTEX (Atlantic PIRI methodology), and VOC (at MW6 only) analysis.

Water samples for the May and October 2020 monitoring events were collected in laboratorysupplied containers (metals samples were field-filtered and preserved), placed in cool storage and transported to the Bureau Veritas laboratory in Bedford, NS for analysis.

Free phase petroleum product was encountered and measured by Englobe personnel in monitoring well MW11 in October 2013; one sample was collected in 2013 from MW11 for identification of the petroleum product and was identified by the laboratory as 'lube oil fraction'. Due to the presence of free product during the April/October 2014, June/November 2015, and April/October 2016 monitoring events, samples from MW11 were not collected. Samples were collected from this well during the 2017, 2018, and 2020 sampling events as there was no longer free product observed in this well.

On May 28, 2020 toxicity samples were collected from the three specified surface water (effluent) locations. For collection of the water samples, 20-litre buckets and liners (supplied by the laboratory) were used. The samples were delivered the same day to Harris Industrial Testing Service Ltd. in South Rawdon, NS for toxicity testing (96-hour single concentration acute lethality test using method EPS 1/RM/13 2nd Edition Dec. 2000 with May 2007 Amendments). The locations of the effluent samples are shown in Figure 1 (Appendix A).

5 Field Observations

During the site work, all monitoring wells appeared to be in good condition. Groundwater levels measured at each location are presented in Table 5-1 (page 5).

Table 5-1 - Groundwater Levels and Field Observations - DSME Trenton, Civic No. 34 Power Plant Road, Trenton, NS

		Field Data									
Location		May 28, 2020	Oct 28, 2020								
	GW Depth (m)	Notes	GW Depth (m)	Notes							
MW1	2.58	PHC odour	4.58	PHC odour							
MW3	2.56	Silty	1.63	Silty							
MW4	3.52	Silty	3.50	Silty							
MW6	2.66	Sheen	2.92	-							
MW9	4.20	Silty	3.66	PHC odour							
MW11	2.66	PHC odour, sheen	3.08	PHC odour, sheen							
MW14	2.59	-	3.18	-							

During the May and October 2020 sampling events, all monitor wells were observed to be protected against tampering with locked covers, as per the NSE Approval Section 10 (g).

6 Groundwater Analytical Results

Groundwater analytical results are compared with concentration limits from Appendix A of the NSE Approval No. 2020-2690526-00 for the Trenton Commercial Park site. The 2013 NSE Tier 1 EQS for a non-potable site with commercial receptors and coarse-grained soil are also provided for reference in Table B1 (Appendix B). General chemistry results (pH and conductivity) as well as the five select metals parameters (iron, zinc, manganese, lead and arsenic) are presented in Table B2 (Appendix B) compared with the concentration limits from Appendix 1 of the NSE Approval No. 2020-2690526-00. VOCs analytical results are compared with the 2013 NSE Tier 1 EQS values, provided in Table B3 (Appendix B).

The tables include both the May and October 2020 analytical results (collected and reported by Englobe). Copies of the laboratory certificates are provided in Appendix C.

6.1 TPH/BTEX Compounds

Concentrations of modified TPH in groundwater samples collected from the seven monitoring wells did not exceed the NSE Approval criteria of 15 mg/L.

Concentrations of modified TPH in groundwater collected from MW3, MW4, and MW6 were reported as below the laboratory detection limit (0.090 mg/L) and below the NSE approval criteria during both the May and October 2020 sampling events.

Concentrations of modified TPH in groundwater collected from MW1, MW9, MW11 and MW14 ranged from 0.17 mg/L (MW14 in May) to 14 mg/L (MW1 in October). All concentrations of modified TPH were below the NSE Approval criteria during both the May and October 2020 sampling events.

Concentrations of BTEX in groundwater samples collected from MW3, MW4, MW6, MW9, MW11, and MW14 were reported as below the laboratory detection limits (0.0010 or 0.0020 mg/L) and below the NSE Tier 1 EQS during both the May and October 2020 sampling events. However, the concentration of BTEX in the samples collected from MW1 in May and October 2020 were

reported above the laboratory detection limits. The results reported from MW1 in both sampling events ranged from 0.009 mg/L (MW1 in May) to 0.014 mg/L (MW1 in October) for toluene, 0.79 mg/L (MW1 in May) to 0.87 mg/L (MW1 in October) for ethylbenzene, and 0.79 mg/L (MW1 in May) to 1.0 mg/L (MW1 in October) for xylenes. These concentrations for toluene, ethylbenzene and xylenes are below the NSE Approval criteria.

6.2 Conductivity and pH

There is no limit or range for conductivity specified in the Industrial Approval for Trenton Commercial Park. Conductivity in the wells ranged from 140 μ S/cm (MW6) to 4,100 μ S/cm (MW1) in May 2020, and 210 (MW6) to 3,300 μ S/cm (MW1) in October 2020.

The NSE Approval range for pH is 6.0 to 8.5. In May 2020 pH ranged from 6.58 (MW14) to 7.52 (MW9), while in October 2020, the pH ranged from 6.4 (MW6) to 7.39 (MW9). No pH values were reported outside the range of the NSE Approval.

6.3 Metals

The NSE Approval provides limits for maximum grab sample concentrations and average annual concentrations for arsenic, iron, lead, manganese and zinc. These results are tabulated in Table 3 (Appendix B) and discussed below.

6.3.1 Arsenic

Concentrations of arsenic in groundwater samples collected from the seven monitoring wells did not exceed the NSE Approval limits for grab samples (1,000 μ g/L) or annual average (500 μ g/L) during either the May or October 2020 sampling events.

6.3.2 Iron

Concentrations of iron in groundwater samples collected from MW1 (24,000 μ g/L in May and 14,000 μ g/L in October), MW3 (9,400 μ g/L in October), and MW11 (20,000 μ g/L in May and 4,900 μ g/L in October) exceeded the NSE Approval limit for grab samples (7,000 μ g/L) and for annual average concentration (3,500 μ g/L).

Concentrations of iron in groundwater samples collected from MW3 (May), MW4, MW6, MW9, and MW14 did not exceed the NSE Approval limits.

6.3.3 Lead

Concentrations of lead in groundwater samples collected from the seven monitoring wells did not exceed the NSE Approval limits for grab samples (400 μ g/L) or annual average concentration (200 μ g/L) during either the May or October 2020 sampling events.

6.3.4 Manganese

Concentrations of manganese in groundwater samples collected from MW1 (31,000 μ g/L in May and 15,000 μ g/L in October), MW3 (4,500 μ g/L in May and 5,700 μ g/L October), and MW4 (5,600 μ g/L in May and 4,200 μ g/L October) exceeded the NSE Approval limits for grab samples (4,000 μ g/L) and for annual average concentration (2,000 μ g/L).

Concentrations of manganese in groundwater samples collected from the seven monitoring wells did not exceed the NSE Approval limit for annual average concentration (2,000 μ g/L) during either the May or October 2020 sampling events.

Concentrations of manganese in groundwater samples collected from MW6, MW9, MW11, and MW14 (May) did not exceed the NSE Approval limits.

6.3.5 Zinc

Concentrations of zinc in groundwater samples collected from the seven monitoring wells did not exceed the NSE Approval limits for grab samples (1,000 μ g/L) or annual average concentration (500 μ g/L) during either the May or October 2020 sampling events.

6.4 VOCs

Concentrations of VOCs in groundwater samples collected from MW6 were reported as below laboratory detection limits and below NSE Tier 1 EQS except for cis-1,2-dichloroethylene (2.5 μ g/L in May and 8.6 μ g/L in October), trichloroethylene (19 μ g/L in May and 34 μ g/L in October), and vinyl chloride (2.3 μ g/L in October). These values are below the respective 2013 NSE Tier 1 EQS for cis-1,2-dichloroethylene (30 μ g/L), trichloroethylene (250 μ g/L), and vinyl chloride (13 μ g/L).

7 Toxicity Testing Results

The NSE Approval indicates that samples collected for toxicity must "Pass" a 96-hour static fish toxicity test.

For all three locations tested (TW1, TW3 and TW4) in May 2020, the laboratory reported 0% Mortality (Pass). The laboratory certificates are provided in (Appendix C).

8 Conclusions

Based on the field observations and analytical results obtained, we make the following conclusions and statements on the identification of any groundwater or surface water discharge impacts as a result of site activities during the 2020 calendar year:

- The concentration of modified TPH and BTEX in groundwater collected from the seven monitoring wells did not exceed the NSE Approval criteria in May or October 2020.
- The pH values collected from the seven monitoring wells at Trenton Commercial Park were reported to be within the range specified in the NSE Approval.
- Concentrations of iron in monitoring wells MW1, MW3 (in October), and MW11 exceeded both the maximum grab sample concentration limit and the average annual concentration limit. The reason for the elevated iron concentrations at MW1, MW3 and MW11 is unknown.
- Concentrations of manganese in monitoring wells MW1, MW3, and MW4 exceeded both the maximum grab sample concentration limit and the average annual concentration limit. MacGregor (June 2013) reported similar manganese concentrations at these locations dating back to at least April 2003, suggesting that elevated manganese concentrations may be the result of historic buried fill materials on site.

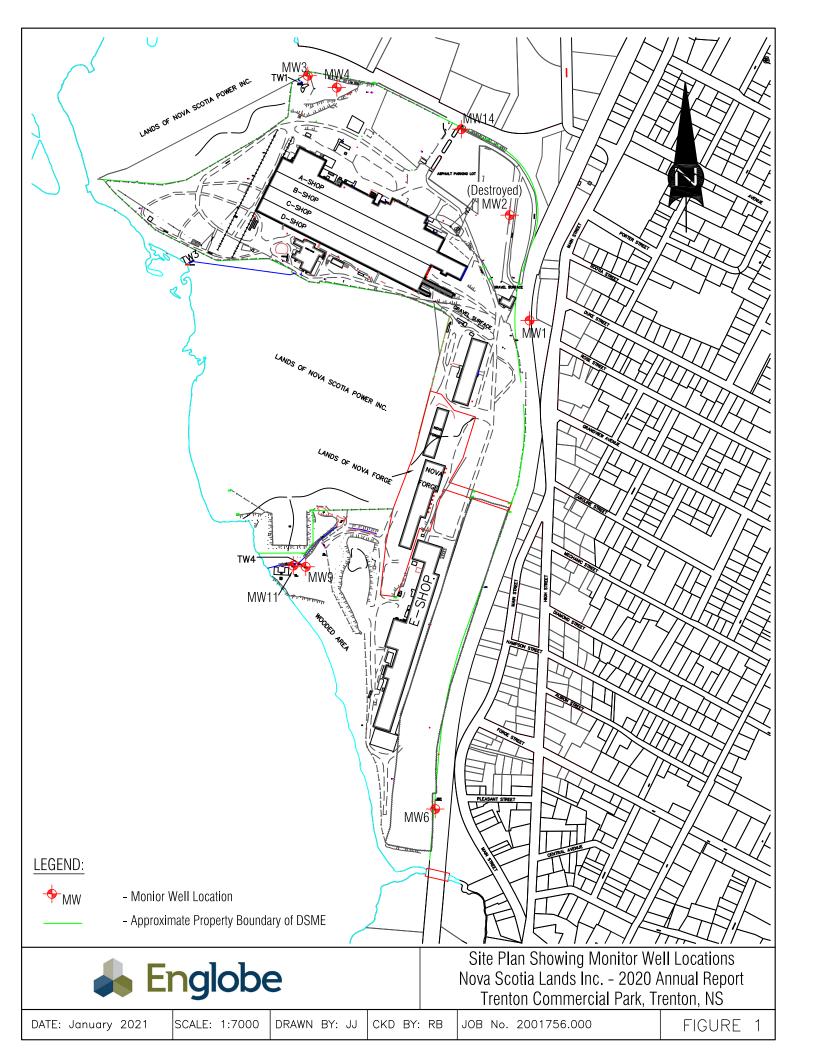
- All remaining parameters that require monitoring by NSE have been documented to satisfy the limits or are within the ranges stipulated by NSE under Approval No. 2020-2690529-00.
- Concentrations of several VOCs in groundwater collected at monitoring well MW6 in May and October 2020 were reported above the laboratory detection limit. There are no NSE Approval limits for VOCs specified in the NSE Approval. The reported VOC concentrations satisfy the NSE Tier 1 EQS. The source of VOCs is likely not from site activities, as monitoring well MW6 is considered an upgradient well.

In conclusion, the annual groundwater sampling from 2020 has not identified any impacts resulting from on-site activities. Additional site work regarding petroleum hydrocarbon impacts at MW1 and continued sampling for VOCs at MW6 are recommended.

The next monitoring event is scheduled for April 2021 and will be conducted by Englobe using the sampling methodology discussed herein.

9 Report Use and Conditions

This report was prepared for the exclusive use of Nova Scotia Lands Inc. and is based on data and information obtained during site visits by Englobe Corp., personnel in May and October 2020 for the purpose of collection of groundwater samples from seven (7) existing monitoring wells and surface water discharge from three (3) sampling locations. The report is based solely upon the condition of the property on the dates of such site visits, supplemented by information obtained and described herein including tabulation and interpretation of selected laboratory groundwater and surface water toxicity analyses.


The scope of the services performed may not be appropriate to satisfy the needs of third parties. Any use which a third party makes of this report, or any reliance on or decisions made based on it, is the sole responsibility of the third party. Englobe Corp. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The statements and conclusions presented in this report are professional opinions based upon visual observations made during the scope of work identified herein.

Environmental conditions are dynamic in nature and changing circumstances in the environment and in the use of the property can alter radically the conclusions and information contained herein.

Appendix A Site Map Showing Monitor Well and Surface Water Sampling Locations

Appendix B Tabulated Analytical Results

TABLE B1: TOTAL PETROLEUM HYDROCARBON (TPH) COMPOUNDS in Groundwater Client: Nova Scotia Lands Inc. Site Location: Civic No. 34 Power Plant Road, Trenton, NS Englobe Project No.: 2001756

					Sample ID									
	Parameter	Units	2013 NSE Tier 1 EQS ¹	NSE Approval No. 2010- 072182-R02 Concentration Limit	Date Sampled									
	Parameter	Units			MW1		MW3		MW4		MW6			
					2020-05-28	2020-10-28	2020-05-28	2020-10-28	2020-05-28	2020-10-28	2020-05-28	2020-10-28		
	Benzene	mg/L	20	-	<0.0030	0.009	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010		
BTEX (mg/L)	Toluene	mg/L	20	-	0.0089	0.014	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010		
DIEX (IIIg/E)	Ethylbenzene	mg/L	20	-	0.79	0.87	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010		
	Xylenes	mg/L	20	-	0.79	1.0	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020		
	Gas Range	mg/L	-	-	10	12	<0.090	<0.090	<0.090	<0.090	<0.090	<0.090		
Modified TPH (mg/L)	Fuel Range (C ₁₀ -C ₁₆)	mg/L	-	-	2.5	2.7	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050		
Mounieu TFH (ing/L)	Fuel Range (C>16-C21)	mg/L	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050		
	Lube Range (>C ₂₁ -C ₃₂)	mg/L	-	-	0.092	0.1	<0.090	<0.090	<0.090	<0.090	<0.090	<0.090		
Total Modi	fied TPH - Tier 1 (mg/L)	mg/L	20 as gas 20 as fuel oil 20 as lube oil	15	13	14	<0.090	<0.090	<0.090	<0.090	<0.090	<0.090		
Pro	duct Resemblance	-	-	-	One product in the gas/fuel oil range. Possible lube oil fraction.	One product in the gas/fuel oil range. Unidentified compound(s) in lube oil fraction.	-	-	-	-	-	-		

					Sample ID									
	Parameter		2013 NSE Tier 1 EQS ¹	NSE Approval No. 2010- 072182-R02 Concentraion Limit	Date Sampled									
raiaiietei		Units			м	MW9		V11	MW14	MW14 Duplicate	MW14	MW14 Duplicate		
					2020-05-28	2020-10-28	2020-05-28	2020-10-28	2020-05-28	2020-05-28	2020-10-28	2020-10-28		
	Benzene	mg/L	20	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010		
BTEX (mg/L)	Toluene	mg/L	20	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010		
BIEX (IIIg/L)	Ethylbenzene	mg/L	20	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010		
	Xylenes	mg/L	20	-	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020		
Gas Range	Gas Range	mg/L	-	-	<0.090	<0.090	<0.090	<0.090	<0.090	<0.090	<0.090	<0.090		
Modified TPH (mg/L)	Fuel Range (C ₁₀ -C ₁₆)	mg/L	-	-	< 0.050	0.051	0.17	0.24	0.07	<0.050	<0.050	<0.050		
Moullieu TFH (Ilig/L)	Fuel Range (C ₁₆ -C ₂₁)	mg/L	-	-	0.08	0.21	0.47	0.76	0.10	<0.050	<0.050	<0.050		
	Lube Range (>C ₂₁ -C ₃₂)	mg/L	-	-	0.58	1.3	4.20	7.7	<0.090	<0.090	<0.090	<0.090		
Total Modi	fied TPH - Tier 1 (mg/L)	mg/L	20 as gas 20 as fuel oil 20 as lube oil	15	0.66	1.5	4.8	8.7	0.17	<0.090	<0.090	<0.090		
Proc	duct Resemblance	-	-	-	Lube oil fraction.	Lube oil fraction.	Lube oil fraction.	One product in fuel oil range. Lube oil fraction.	-	-	-	-		

Notes:

- value exceeds NSE Limit for Approval 2010-072182-R02

value - value exceeds NSE Limit for Approval 2010-072182-R02 and 2013 NSE Tier 1 EQS

The NSE Approval Limit of 15 mg/L for TPH applies both to Average Annual Concentration Limit and Maximum Grab Sample Concentration Limit

¹ 2013 Nova Scotia Environment Tier 1 Environmental Quality Standards at a commercial site with non-potable groundwater and coarse-grained soil.

TABLE B2: METALS, pH and CONDUCTIVITY in Groundwater Client: Nova Scotia Lands Inc. Site Location: Civic No. 34 Power Plant Road, Trenton, NS Englobe Project No.: 2001756

											Sa	ample ID							
		NSE Approval No. 2010- 072182-R02 Maximum	NSE Approval No. 2010- 072182-R02 Average		Date Sampled														
Parameter	Units	Grab Sample Concentraion Limit/Range	Annual Concentraion	м	W1	MW3		M	W4	N	NW6	MW9	MW11		MW14	MW14 Lab Duplicate	MW14	MW14 Lab Duplicate	
				2020-05-28	2020-10-28	2020-05-28	2020-10-28	2020-05-28	2020-10-28	2020-05-28	2020-10-28	2020-05-28	2020-10-28	2020-05-28	2020-10-28	2020-05-28	2020-05-28	2020-10-28	2020-10-28
pН	pН	6.0-8.5	6.0-8.5	7.01	7.03	6.99	6.91	6.59	6.57	6.65	6.4	7.52	7.39	7.11	7.38	6.71	6.63	6.58	6.63
Conductivity	µS/cm			4100	3300	820	680	330	330	140	210	540	700	600	640	530	550	630	640
Arsenic	μg/L	1000	500	1.0	3.1	3.7	2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8	1.3	<1.0	<1.0	<1.0	<1.0
Iron	μg/L	7000	3500	24000		<50		<50	<50	<50	<50	220	1500	20000		<50	<50	<50	<50
Lead	μg/L	400	200	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Manganese	μg/L	4000	2000	31000						6.4	37	780	1400	1600	1500	1300	1300	1900	2000
Zinc	μg/L	1000	500	7	<5.0	24	<5.0	55	47	7.4	7.4	8.1	5.9	5.9	<5.0	160	160	56	56

Notes:

e - value exceeds NSE Limit (Approval 2010-072182-R02) for Grab Sample Concentration

- value exceeds NSE Limit (Approval 2010-072182-R02) for Annual Average Concentration

- value exceeds both NSE Approval Limits

👃 👃 Englobe

TABLE B3: VOLATILE ORGANIC COMPOUNDS (VOCs) COMPOUNDS in Groundwater Client: Nova Scotia Lands Inc. Site Location: Civic No. 34 Power Plant Road, Trenton, NS Englobe Project No.: 2001756

				Sample ID	
Devenuetor	Units	2013 NSE EQS ¹		Date Sampled	
Parameter	Units	2013 NSE EQS	MW6	MW6 Lab Duplicate	MW6
			2020-05-28	2020-05-28	2020-10-28
Chlorobenzenes					
1,2-Dichlorobenzene	μg/L	64000	<0.50	<0.50	<0.50
1,3-Dichlorobenzene	μg/L	-	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	μg/L	2600	<1.0	<1.0	<1.0
Chlorobenzene	μg/L	180	<1.0	<1.0	<1.0
Volatile Organics					
1,1,1-Trichloroethane	μg/L	13000	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	μg/L	630	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	μg/L	910	<1.0	<1.0	<1.0
1,1-Dichloroethane	μg/L	6600	<2.0	<2.0	<2.0
1,1-Dichloroethylene	μg/L	490	<0.50	<0.50	<0.50
1,2-Dichloroethane	μg/L	11300	<1.0	<1.0	<1.0
1,2-Dichloropropane	μg/L	300	<0.50	<0.50	<0.50
Benzene	μg/L	20000	<1.0	<1.0	<1.0
Bromodichloromethane	μg/L	-	<1.0	<1.0	<1.0
Bromoform	μg/L	84000	<1.0	<1.0	<1.0
Bromomethane	μg/L	33	<0.50	<0.50	<0.50
Carbon Tetrachloride	μg/L	6.8	<0.50	<0.50	<0.50
Chloroethane	μg/L	-	<8.0	<8.0	<8.0
Chloroform	μg/L	40	<1.0	<1.0	<1.0
Chloromethane	μg/L	-	<8.0	<8.0	<8.0
cis-1,2-Dichloroethylene	μg/L	30	2.5	2.5	8.6
cis-1,3-Dichloropropene	μg/L	-	<0.50	<0.50	<0.50
Dibromochloromethane	μg/L	10000	<1.0	<1.0	<1.0
Ethylbenzene	μg/L	20000	<1.0	<1.0	<1.0
Ethylene Dibromide	μg/L	51	<0.20	<0.20	<0.20
Methyl t-butyl ether (MTBE)	μg/L	4300	<2.0	<2.0	<2.0
Methylene Chloride(Dichloromethane)	μg/L	43000	<3.0	<3.0	<3.0
o-Xylene	μg/L	•	<1.0	<1.0	<1.0
p+m-Xylene	μg/L	-	<2.0	<2.0	<2.0
Styrene	μg/L	26000	<1.0	<1.0	<1.0
Tetrachloroethylene	μg/L	1300	<1.0	<1.0	<1.0
Toluene	μg/L	20000	<1.0	<1.0	<1.0
Total Trihalomethanes	μg/L	-	<1.0	<1.0	<1.0
Total Xylenes	μg/L	20000	<1.0	<1.0	<1.0
trans-1,2-Dichloroethylene	μg/L	30	<0.50	<0.50	<0.50
trans-1,3-Dichloropropene	μg/L	-	<0.50	<0.50	<0.50
Trichloroethylene	μg/L	250	19	19	34
Trichlorofluoromethane (FREON 11)	μg/L	-	<8.0	<8.0	<8.0
Vinyl Chloride	μg/L	13	<0.50	<0.50	2.3

Notes:

value - value exceeds NSE Tier 1 EQS

¹ 2013 Nova Scotia Environment Tier 1 Environmental Quality Standards at a commercial site with non-potable groundwater and coarse-grained soil.

Appendix C Laboratory Certificates

Your Project #: 2001756 Your C.O.C. #: 774102-01-01

Attention: Ryan Pellerin

Englobe Corp 97 Troop Ave Dartmouth, NS CANADA B3B 2A7

> Report Date: 2020/06/08 Report #: R6202181 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0D3175 Received: 2020/05/29, 09:23

Sample Matrix: Water # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Conductance - water	10	N/A	2020/06/04	ATL SOP 00004	SM 23 2510B m
TEH in Water (PIRI)	5	2020/06/02	2020/06/02	ATL SOP 00113	Atl. RBCA v3.1 m
TEH in Water (PIRI)	5	2020/06/02	2020/06/03	ATL SOP 00113	Atl. RBCA v3.1 m
Metals Water Diss. MS (1)	1	N/A	2020/06/05	ATL SOP 00058	EPA 6020B R2 m
Metals Water Diss. MS (as rec'd)	9	N/A	2020/06/05	ATL SOP 00058	EPA 6020B R2 m
рН (2)	10	N/A	2020/06/04	ATL SOP 00003	SM 23 4500-H+ B m
ModTPH (T1) Calc. for Water	5	N/A	2020/06/03	N/A	Atl. RBCA v3 m
ModTPH (T1) Calc. for Water	5	N/A	2020/06/04	N/A	Atl. RBCA v3 m
Volatile Organic Compounds in Water	1	N/A	2020/06/04	ATL SOP 00133	EPA 8260D R4 m
VPH in Water (PIRI)	10	N/A	2020/06/03	ATL SOP 00130	Atl. RBCA v3.1 m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Sample filtered in laboratory prior to analysis for dissolved metals.

(2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

Your Project #: 2001756 Your C.O.C. #: 774102-01-01

Attention: Ryan Pellerin

Englobe Corp 97 Troop Ave Dartmouth, NS CANADA B3B 2A7

> Report Date: 2020/06/08 Report #: R6202181 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0D3175 Received: 2020/05/29, 09:23

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Keri Mackay, Customer Experience Team Lead Email: Keri.MACKAY@bvlabs.com Phone# (902)420-0203 Ext:294

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RBCA HYDROCARBONS IN WATER (WATER)

BV Labs ID		MTK166		MTK167	MTK168	MTK169	MTK170		
Someling Data		2020/05/28		2020/05/28	2020/05/28	2020/05/28	2020/05/28		
Sampling Date		12:15		10:30	10:00	14:10	13:30		
COC Number		774102-01-01		774102-01-01	774102-01-01	774102-01-01	774102-01-01		
	UNITS	MW1	RDL	MW3	MW4	MW6	MW9	RDL	QC Batch
Petroleum Hydrocarbons									
Benzene	mg/L	<0.0030 (1)	0.0030	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	6765244
Toluene	mg/L	0.0089	0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	6765244
Ethylbenzene	mg/L	0.79	0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	6765244
Total Xylenes	mg/L	0.79	0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	6765244
C6 - C10 (less BTEX)	mg/L	10	0.090	<0.090	<0.090	<0.090	<0.090	0.090	6765244
>C10-C16 Hydrocarbons	mg/L	2.5	0.050	<0.050	<0.050	<0.050	<0.050	0.050	6765157
>C16-C21 Hydrocarbons	mg/L	<0.050	0.050	<0.050	<0.050	<0.050	0.079	0.050	6765157
>C21- <c32 hydrocarbons<="" p=""></c32>	mg/L	0.092	0.090	<0.090	<0.090	<0.090	0.58	0.090	6765157
Modified TPH (Tier1)	mg/L	13	0.090	<0.090	<0.090	<0.090	0.66	0.090	6763884
Reached Baseline at C32	mg/L	Yes	N/A	NA	NA	NA	Yes	N/A	6765157
Hydrocarbon Resemblance	mg/L	COMMENT (2)	N/A	NA	NA	NA	COMMENT (3)	N/A	6765157
Surrogate Recovery (%)									
Isobutylbenzene - Extractable	%	85		99	101	101	93		6765157
n-Dotriacontane - Extractable	%	109		114	110	109	105		6765157
Isobutylbenzene - Volatile	%	104		101	98	101	101		6765244
RDL = Reportable Detection Lim	it								
OC Batch - Quality Control Bata	h.								

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated VPH RDL(s) due to matrix interference.

(2) One product in the gas/fuel oil range. Possible lube oil fraction.

(3) Lube oil fraction.

RBCA HYDROCARBONS IN WATER (WATER)

BV Labs ID		MTK171	MTK172	MTK173	MTK174	MTK175		
Sampling Date		2020/05/28 13:00	2020/05/28 11:00	2020/05/28	2020/05/28	2020/05/28		
COC Number		774102-01-01	774102-01-01	774102-01-01	774102-01-01	774102-01-01		
	UNITS	MW11	MW14	TRIP BLANK	EQUIPMENT BLANK	MW-DUP	RDL	QC Batch
Petroleum Hydrocarbons								
Benzene	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	6765244
Toluene	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	6765244
Ethylbenzene	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	6765244
Total Xylenes	mg/L	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	6765244
C6 - C10 (less BTEX)	mg/L	<0.090	<0.090	<0.090	<0.090	<0.090	0.090	6765244
>C10-C16 Hydrocarbons	mg/L	0.17	0.074	<0.050	<0.050	<0.050	0.050	6765157
>C16-C21 Hydrocarbons	mg/L	0.47	0.096	<0.050	<0.050	<0.050	0.050	6765157
>C21- <c32 hydrocarbons<="" p=""></c32>	mg/L	4.2	<0.090	<0.090	0.098	<0.090	0.090	6765157
Modified TPH (Tier1)	mg/L	4.8	0.17	<0.090	0.098	<0.090	0.090	6763884
Reached Baseline at C32	mg/L	No	Yes	NA	Yes	NA	N/A	6765157
Hydrocarbon Resemblance	mg/L	COMMENT (1)	COMMENT (2)	NA	COMMENT (3)	NA	N/A	6765157
Surrogate Recovery (%)								
Isobutylbenzene - Extractable	%	89	99	105	94	99		6765157
n-Dotriacontane - Extractable	%	73	108	95	101	82		6765157
Isobutylbenzene - Volatile	%	101	100	101	103	102		6765244
RDL = Reportable Detection Lim QC Batch = Quality Control Batc								
N/A = Not Applicable								
i de la constante de la constan								

(1) Lube oil fraction.

(2) One product in fuel oil range.

(3) Possible lube oil fraction.

BV Labs ID		MTK169	MTK169		
Semuling Date		2020/05/28	2020/05/28		
Sampling Date		14:10	14:10		
COC Number		774102-01-01	774102-01-01		
	UNITS	MW6	MW6 Lab-Dup	RDL	QC Batch
Volatile Organics					
1,1-Dichloroethane	ug/L	<2.0	<2.0	2.0	6769412
1,1-Dichloroethylene	ug/L	<0.50	<0.50	0.50	6769412
1,1,1-Trichloroethane	ug/L	<1.0	<1.0	1.0	6769412
1,1,2-Trichloroethane	ug/L	<1.0	<1.0	1.0	6769412
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	6769412
Ethylene Dibromide	ug/L	<0.20	<0.20	0.20	6769412
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	6769412
1,2-Dichloroethane	ug/L	<1.0	<1.0	1.0	6769412
cis-1,2-Dichloroethylene	ug/L	2.5	2.5	0.50	6769412
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	0.50	6769412
1,2-Dichloropropane	ug/L	<0.50	<0.50	0.50	6769412
1,3-Dichlorobenzene	ug/L	<1.0	<1.0	1.0	6769412
cis-1,3-Dichloropropene	ug/L	<0.50	<0.50	0.50	6769412
trans-1,3-Dichloropropene	ug/L	<0.50	<0.50	0.50	6769412
1,4-Dichlorobenzene	ug/L	<1.0	<1.0	1.0	6769412
Benzene	ug/L	<1.0	<1.0	1.0	6769412
Bromodichloromethane	ug/L	<1.0	<1.0	1.0	6769412
Bromoform	ug/L	<1.0	<1.0	1.0	6769412
Bromomethane	ug/L	<0.50	<0.50	0.50	6769412
Carbon Tetrachloride	ug/L	<0.50	<0.50	0.50	6769412
Chlorobenzene	ug/L	<1.0	<1.0	1.0	6769412
Chloroethane	ug/L	<8.0	<8.0	8.0	6769412
Chloroform	ug/L	<1.0	<1.0	1.0	6769412
Chloromethane	ug/L	<8.0	<8.0	8.0	6769412
Dibromochloromethane	ug/L	<1.0	<1.0	1.0	6769412
Methylene Chloride(Dichloromethane)	ug/L	<3.0	<3.0	3.0	6769412
Ethylbenzene	ug/L	<1.0	<1.0	1.0	6769412
Methyl t-butyl ether (MTBE)	ug/L	<2.0	<2.0	2.0	6769412
Styrene	ug/L	<1.0	<1.0	1.0	6769412
Tetrachloroethylene	ug/L	<1.0	<1.0	1.0	676941
Toluene	ug/L	<1.0	<1.0	1.0	676941
Trichloroethylene	ug/L	19	19	1.0	6769412
Trichlorofluoromethane (FREON 11)	ug/L	<8.0	<8.0	8.0	6769412
Vinyl Chloride	ug/L	<0.50	<0.50	0.50	6769412
RDL = Reportable Detection Limit	,			ļ	
QC Batch = Quality Control Batch					

ATLANTIC VOCS - NON-CHLORINATED WATER (WATER)

BV Labs ID		MTK169	MTK169		
Sampling Data		2020/05/28	2020/05/28		
Sampling Date		14:10	14:10		
COC Number		774102-01-01	774102-01-01		
	UNITS	MW6	MW6 Lab-Dup	RDL	QC Batch
o-Xylene	ug/L	<1.0	<1.0	1.0	6769412
p+m-Xylene	ug/L	<2.0	<2.0	2.0	6769412
Total Xylenes	ug/L	<1.0	<1.0	1.0	6769412
Total Trihalomethanes	ug/L	<1.0	<1.0	1.0	6769412
Surrogate Recovery (%)			-		
4-Bromofluorobenzene	%	97	97		6769412
D4-1,2-Dichloroethane	%	107	108		6769412
D8-Toluene	%	95	94		6769412
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					
Lab-Dup = Laboratory Initiated Duplica	ate				

ATLANTIC VOCS - NON-CHLORINATED WATER (WATER)

RESULTS OF ANALYSES OF WATER

							1	
	MTK166	MTK167	MTK168	MTK169	MTK170	MTK171		
	2020/05/28	2020/05/28	2020/05/28	2020/05/28	2020/05/28	2020/05/28		
	12:15	10:30	10:00	14:10	13:30	13:00		
	774102-01-01	774102-01-01	774102-01-01	774102-01-01	774102-01-01	774102-01-01		
UNITS	MW1	MW3	MW4	MW6	MW9	MW11	RDL	QC Batch
pН	7.01	6.99	6.59	6.65	7.52	7.11		6769362
uS/cm	4100	820	330	140	540	600	1.0	6769360
ection Limit								
ontrol Batch								
			-	-				
	MTK	172 MTK	173	MTK17	74 M	ГК175		
•		· 2020/0	05/28	2020/05	/28 2020)/05/28		
	pH uS/cm ection Limit ontrol Batch	2020/05/28 12:15 774102-01-01 UNITS PH 7.01 uS/cm 4100 ection Limit ontrol Batch MTK 2020/05/28	2020/05/28 2020/05/28 12:15 10:30 774102-01-01 774102-01-01 UNITS MW1 MW3 pH 7.01 6.99 uS/cm 4100 820 ection Limit MTK172 MTK	2020/05/28 2020/05/28 2020/05/28 12:15 10:30 10:00 774102-01-01 774102-01-01 774102-01-01 UNITS MW1 MW3 MW4 pH 7.01 6.99 6.59 uS/cm 4100 820 330 ection Limit ontrol Batch MTK172 MTK173	2020/05/28 2020/05/28 2020/05/28 2020/05/28 12:15 10:30 10:00 14:10 774102-01-01 774102-01-01 774102-01-01 774102-01-01 UNITS MW1 MW3 MW4 MW6 pH 7.01 6.99 6.59 6.65 uS/cm 4100 820 330 140 ection Limit MTK172 MTK173 MTK173	2020/05/28 2020/05	2020/05/28 2020/05/28	2020/05/28 2020/05/28

b8		11:00	2020,00,20		=0=0/00/20	2020,00,20					
COC Number		774102-01-01	774102-01-01		774102-01-01	774102-01-01					
	UNITS	MW14	TRIP BLANK	QC Batch	EQUIPMENT BLANK	MW-DUP	RDL	QC Batch			
Inorganics											
рН	рН	6.71	6.14	6769362	6.06	6.63		6769366			
Conductivity	uS/cm	530	<1.0	6769360	1.2	550	1.0	6769364			
RDL = Reportable Detection Limit QC Batch = Quality Control Batch											

ELEMENTS BY ICP/MS (WATER)

BV Labs ID		MTK	166		MTK167		MTK168	MTK	169	MTK	170		
Samuling Data		2020/	05/28		2020/05/28		2020/05/28	2020/0)5/28	2020/0)5/28		
Sampling Date		12	:15		10:30		10:00	14:	10	13:	30		
COC Number		774102	2-01-01		774102-01-0	1	774102-01-01	774102	-01-01	774102	-01-01	1	
	UNITS	M۱	N1	QC Batch	MW3	QC Batch	MW4	MM	V6	MV	V9	RDL	QC B
Metals													
Dissolved Arsenic (As)	ug/L	1.	0	6771614	3.7	6769739	<1.0	<1.	.0	<1	.0	1.0	6771
Dissolved Iron (Fe)	ug/L	240	000	6771614	<50	6769739	<50	<5	0	22	0	50	6771
Dissolved Lead (Pb)	ug/L	<0.	.50	6771614	<0.50	6769739	<0.50	<0.5	50	<0.	50	0.50	6771
Dissolved Manganese (Mn)	ug/L	310	000	6771614	4500	6769739	5600	6.4	4	78	0	2.0	6771
		7	.0	6771614	24	6769739	55	7.4	4	8.	1	5.0	6771
RDL = Reportable Detection Li QC Batch = Quality Control Ba							1						
Dissolved Zinc (Zn) RDL = Reportable Detection Li QC Batch = Quality Control Ba	mit	, , ,											
RDL = Reportable Detection Li	mit		MTK	171	MTK172	MTK173	MTK17	4	МТК	175			
RDL = Reportable Detection Li QC Batch = Quality Control Ba	mit		MTK: 2020/0	05/28	2020/05/28					-			
RDL = Reportable Detection Li QC Batch = Quality Control Ba BV Labs ID Sampling Date	mit		MTK: 2020/0 13:0	05/28 2 00	2020/05/28 11:00	2020/05/28	2020/05,	/28	2020/	05/28			
RDL = Reportable Detection Li QC Batch = Quality Control Ba	mit		MTK: 2020/0 13:(774102-	05/28 2 00 -01-01 7	2020/05/28 11:00 74102-01-01	2020/05/28	2020/05, 774102-0	/28 1-01	2020/0 774102	05/28			
RDL = Reportable Detection Li QC Batch = Quality Control Ba BV Labs ID Sampling Date	mit	UNITS	MTK: 2020/0 13:0	05/28 2 00 -01-01 7	2020/05/28 11:00 74102-01-01	2020/05/28	2020/05,	/28 1-01	2020/	05/28	RDL	QC Bat	cch
RDL = Reportable Detection Li QC Batch = Quality Control Ba BV Labs ID Sampling Date	mit		MTK: 2020/0 13:(774102-	05/28 2 00 -01-01 7	2020/05/28 11:00 74102-01-01	2020/05/28	2020/05, 774102-0	/28 1-01	2020/0 774102	05/28	RDL	QC Bat	ch
RDL = Reportable Detection Li QC Batch = Quality Control Ba BV Labs ID Sampling Date COC Number	mit tch		MTK: 2020/0 13:(774102-	05/28 2 00 -01-01 7 711	2020/05/28 11:00 74102-01-01	2020/05/28	2020/05, 774102-0	/28 1-01	2020/0 774102	05/28 2-01-01 • DUP		QC Bat	
RDL = Reportable Detection Li QC Batch = Quality Control Ba BV Labs ID Sampling Date COC Number Metals	mit tch	UNITS	MTK2 2020/0 13:0 774102- MW	05/28 20 00 7 -01-01 7 11 8	2020/05/28 11:00 74102-01-01 MW14	2020/05/28 774102-01-01 TRIP BLANK	2020/05, 774102-0 EQUIPMENT	/28 1-01	2020/0 774102 MW-	05/28 2-01-01 DUP	1.0	•	14
RDL = Reportable Detection Li QC Batch = Quality Control Ba BV Labs ID Sampling Date COC Number Metals Dissolved Arsenic (As)	mit tch	UNITS ug/L	MTK: 2020/0 13:0 774102- MW 1.8	05/28 00 -01-01 7 /11 8 00	2020/05/28 11:00 74102-01-01 MW14 <1.0	2020/05/28 774102-01-01 TRIP BLANK <1.0	2020/05, 774102-0: EQUIPMENT <1.0	/28 1-01 BLANK	2020/0 774102 MW- <1	05/28 2-01-01 DUP .0 50	1.0 50	67716	14 14
RDL = Reportable Detection Li QC Batch = Quality Control Ba BV Labs ID Sampling Date COC Number Metals Dissolved Arsenic (As) Dissolved Iron (Fe)	mit tch	UNITS ug/L ug/L	MTK: 2020/0 13: 774102- MW 1.8 2000	05/28 2 00 7 -01-01 7 /11 7 8 00 50 6	2020/05/28 11:00 74102-01-01 MW14 <1.0 <50	2020/05/28 774102-01-01 TRIP BLANK <1.0 <50	2020/05, 774102-0: EQUIPMENT <1.0 <50	/28 1-01 BLANK	2020/0 774102 MW- <1 <5	05/28 2-01-01 DUP .0 50 50	1.0 50 0.50	677163 677163	14 14 14

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	5.3°C
Package 2	4.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6765157	MSK	Matrix Spike	Isobutylbenzene - Extractable	2020/06/02		94	%	70 - 130
			n-Dotriacontane - Extractable	2020/06/02		103	%	70 - 130
			>C10-C16 Hydrocarbons	2020/06/02		89	%	70 - 130
			>C16-C21 Hydrocarbons	2020/06/02		88	%	70 - 130
			>C21- <c32 hydrocarbons<="" td=""><td>2020/06/02</td><td></td><td>113</td><td>%</td><td>70 - 130</td></c32>	2020/06/02		113	%	70 - 130
6765157	MSK	Spiked Blank	Isobutylbenzene - Extractable	2020/06/02		101	%	70 - 130
0,0010,		opined blank	n-Dotriacontane - Extractable	2020/06/02		98	%	70 - 130
			>C10-C16 Hydrocarbons	2020/06/02		97	%	70 - 130
			>C16-C21 Hydrocarbons	2020/06/02		94	%	70 - 130
			>C21- <c32 hydrocarbons<="" td=""><td>2020/06/02</td><td></td><td>109</td><td>%</td><td>70 - 130</td></c32>	2020/06/02		109	%	70 - 130
6765157	MSK	Method Blank	Isobutylbenzene - Extractable	2020/06/02		99	%	70 - 130
0/0313/	WISK	Wiethou Blank	n-Dotriacontane - Extractable	2020/06/02		93	%	70 - 130
			>C10-C16 Hydrocarbons	2020/06/02	<0.050	55	mg/L	70 150
			>C16-C21 Hydrocarbons	2020/06/02	<0.050		mg/L	
			>C21- <c32 hydrocarbons<="" td=""><td>2020/06/02</td><td><0.090</td><td></td><td>mg/L</td><td></td></c32>	2020/06/02	<0.090		mg/L	
6765157	MSK	חחם	>C10-C16 Hydrocarbons	2020/06/02	<0.030 NC		111g/ L %	40
0/0313/	IVISI	NF D	>C16-C21 Hydrocarbons	2020/06/02	NC		%	40 40
			>C21- <c32 hydrocarbons<="" td=""><td>2020/06/02</td><td>NC</td><td></td><td>%</td><td>40 40</td></c32>	2020/06/02	NC		%	40 40
6765244	THL	Matrix Caika	Isobutylbenzene - Volatile		NC	102	%	
0705244	ITL	Matrix Spike	,	2020/06/03 2020/06/03		102		70 - 130 70 - 130
			Benzene	2020/06/03			%	70 - 130
			Toluene			103	%	70 - 130 70 - 130
			Ethylbenzene	2020/06/03		106	%	
6765244	T 111	Caller d Dis als	Total Xylenes	2020/06/03		109	%	70 - 130
6765244	THL	Spiked Blank	Isobutylbenzene - Volatile	2020/06/03		102	%	70 - 130
			Benzene	2020/06/03		104	%	70 - 130
			Toluene	2020/06/03		104	%	70 - 130
			Ethylbenzene	2020/06/03		108	%	70 - 130
			Total Xylenes	2020/06/03		111	%	70 - 130
6765244	THL	Method Blank	Isobutylbenzene - Volatile	2020/06/03	0.004.0	103	%	70 - 130
			Benzene	2020/06/03	<0.0010		mg/L	
			Toluene	2020/06/03	<0.0010		mg/L	
			Ethylbenzene	2020/06/03	<0.0010		mg/L	
			Total Xylenes	2020/06/03	<0.0020		mg/L	
			C6 - C10 (less BTEX)	2020/06/03	<0.090		mg/L	
6765244	THL	RPD	Benzene	2020/06/03	NC		%	40
			Toluene	2020/06/03	NC		%	40
			Ethylbenzene	2020/06/03	NC		%	40
			Total Xylenes	2020/06/03	NC		%	40
			C6 - C10 (less BTEX)	2020/06/03	NC		%	40
6769360	SHW	Spiked Blank	Conductivity	2020/06/04		103	%	80 - 120
6769360	SHW	Method Blank	Conductivity	2020/06/04	<1.0		uS/cm	
6769360	SHW	RPD	Conductivity	2020/06/04	0.46		%	10
6769362	SHW	Spiked Blank	рН	2020/06/04		101	%	97 - 103
6769362	SHW	RPD	рН	2020/06/04	0.50		%	N/A
6769364	SHW	Spiked Blank	Conductivity	2020/06/04		102	%	80 - 120
6769364	SHW	Method Blank	Conductivity	2020/06/04	<1.0		uS/cm	
6769364	SHW	RPD	Conductivity	2020/06/04	1.2		%	10
6769366	SHW	Spiked Blank	рН	2020/06/04		101	%	97 - 103
6769366	SHW	RPD	рН	2020/06/04	0.87		%	N/A
6769412	ASL	Matrix Spike	4-Bromofluorobenzene	2020/06/04		98	%	70 - 130
			D4-1,2-Dichloroethane	2020/06/04		108	%	70 - 130
			D8-Toluene	2020/06/04		93	%	70 - 130
			1,1-Dichloroethane	2020/06/04		108	%	70 - 130
			1,1-Dichloroethylene	2020/06/04		102	%	70 - 130
			1,1,1-Trichloroethane	2020/06/04		107	%	70 - 130

Page 10 of 16

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC						_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,1,2-Trichloroethane	2020/06/04		113	%	70 - 130
			1,1,2,2-Tetrachloroethane	2020/06/04		107	%	70 - 130
			Ethylene Dibromide	2020/06/04		110	%	70 - 130
			1,2-Dichlorobenzene	2020/06/04		91	%	70 - 130
			1,2-Dichloroethane	2020/06/04		103	%	70 - 130
			cis-1,2-Dichloroethylene	2020/06/04		111	%	70 - 130
			trans-1,2-Dichloroethylene	2020/06/04		110	%	70 - 130
			1,2-Dichloropropane	2020/06/04		97	%	70 - 130
			1,3-Dichlorobenzene	2020/06/04		92	%	70 - 130
			cis-1,3-Dichloropropene	2020/06/04		102	%	70 - 130
			trans-1,3-Dichloropropene	2020/06/04		98	%	70 - 130
			1,4-Dichlorobenzene	2020/06/04		91	%	70 - 130
			Benzene	2020/06/04		94	%	70 - 130
			Bromodichloromethane	2020/06/04		103	%	70 - 130
			Bromoform	2020/06/04		111	%	70 - 130
			Bromomethane	2020/06/04		114	%	60 - 140
			Carbon Tetrachloride	2020/06/04		107	%	70 - 130
			Chlorobenzene	2020/06/04		95	%	70 - 130
			Chloroethane	2020/06/04		103	%	60 - 140
			Chloroform	2020/06/04		99	%	70 - 130
			Chloromethane	2020/06/04		88	%	60 - 140
			Dibromochloromethane	2020/06/04		108	%	70 - 130
			Methylene Chloride(Dichloromethane)	2020/06/04		120	%	70 - 130
			Ethylbenzene	2020/06/04		93	%	70 - 130
			Methyl t-butyl ether (MTBE)	2020/06/04		94	%	70 - 130
			Styrene	2020/06/04		100	%	70 - 130
			Tetrachloroethylene	2020/06/04		106	%	70 - 130
			Toluene	2020/06/04		99	%	70 - 130
			Trichloroethylene	2020/06/04		104	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2020/06/04		100	%	60 - 140
			Vinyl Chloride	2020/06/04		112	%	60 - 140
			o-Xylene	2020/06/04		95	%	70 - 130
			p+m-Xylene	2020/06/04		93	%	70 - 130
6769412	ASL	Spiked Blank	4-Bromofluorobenzene	2020/06/04		98	%	70 - 130
			D4-1,2-Dichloroethane	2020/06/04		102	%	70 - 130
			D8-Toluene	2020/06/04		94	%	70 - 130
			1,1-Dichloroethane	2020/06/04		107	%	70 - 130
			1,1-Dichloroethylene	2020/06/04		103	%	70 - 130
			1,1,1-Trichloroethane	2020/06/04		107	%	70 - 130
			1,1,2-Trichloroethane	2020/06/04		107	%	70 - 130
			1,1,2,2-Tetrachloroethane	2020/06/04		101	%	70 - 130
			Ethylene Dibromide	2020/06/04		103	%	70 - 130
			1,2-Dichlorobenzene	2020/06/04		91	%	70 - 130
			1,2-Dichloroethane	2020/06/04		98	%	70 - 130
			cis-1,2-Dichloroethylene	2020/06/04		109	%	70 - 130
			trans-1,2-Dichloroethylene	2020/06/04		110	%	70 - 130
			1,2-Dichloropropane	2020/06/04		95	%	70 - 130
			1,3-Dichlorobenzene	2020/06/04		93	%	70 - 130
			cis-1,3-Dichloropropene	2020/06/04		101	%	70 - 130
			trans-1,3-Dichloropropene	2020/06/04		96	%	70 - 130
			1,4-Dichlorobenzene	2020/06/04		92	%	70 - 130
			Benzene	2020/06/04		93	%	70 - 130
			Bromodichloromethane	2020/06/04		101	%	70 - 130
			Bromoform	2020/06/04		105	%	70 - 130
			Bromomethane	2020/06/04		112	%	60 - 140

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Carbon Tetrachloride	2020/06/04		107	%	70 - 130
			Chlorobenzene	2020/06/04		96	%	70 - 130
			Chloroethane	2020/06/04		102	%	60 - 140
			Chloroform	2020/06/04		97	%	70 - 130
			Chloromethane	2020/06/04		87	%	60 - 140
			Dibromochloromethane	2020/06/04		104	%	70 - 130
			Methylene Chloride(Dichloromethane)	2020/06/04		116	%	70 - 130
			Ethylbenzene	2020/06/04		95	%	70 - 130
			Methyl t-butyl ether (MTBE)	2020/06/04		93	%	70 - 130
			Styrene	2020/06/04		101	%	70 - 130
			Tetrachloroethylene	2020/06/04		107	%	70 - 130
			Toluene	2020/06/04		100	%	70 - 130
			Trichloroethylene	2020/06/04		105	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2020/06/04		100	%	60 - 140
			Vinyl Chloride	2020/06/04		112	%	60 - 140
			o-Xylene	2020/06/04		96	%	70 - 130
			p+m-Xylene	2020/06/04		95	%	70 - 130
769412	ASL	Method Blank	4-Bromofluorobenzene	2020/06/04		98	%	70 - 130
05412	AJE	Wiethou Blank	D4-1,2-Dichloroethane	2020/06/04		102	%	70 - 13
			D8-Toluene	2020/06/04		95	%	70 - 13
			1,1-Dichloroethane	2020/06/04	<2.0	95		70 - 15
				2020/06/04	<2.0 <0.50		ug/L	
			1,1-Dichloroethylene				ug/L	
			1,1,1-Trichloroethane	2020/06/04	<1.0		ug/L	
			1,1,2-Trichloroethane	2020/06/04	<1.0		ug/L	
			1,1,2,2-Tetrachloroethane	2020/06/04	<0.50		ug/L	
			Ethylene Dibromide	2020/06/04	<0.20		ug/L	
			1,2-Dichlorobenzene	2020/06/04	<0.50		ug/L	
			1,2-Dichloroethane	2020/06/04	<1.0		ug/L	
			cis-1,2-Dichloroethylene	2020/06/04	<0.50		ug/L	
			trans-1,2-Dichloroethylene	2020/06/04	<0.50		ug/L	
			1,2-Dichloropropane	2020/06/04	<0.50		ug/L	
			1,3-Dichlorobenzene	2020/06/04	<1.0		ug/L	
			cis-1,3-Dichloropropene	2020/06/04	<0.50		ug/L	
			trans-1,3-Dichloropropene	2020/06/04	<0.50		ug/L	
			1,4-Dichlorobenzene	2020/06/04	<1.0		ug/L	
			Benzene	2020/06/04	<1.0		ug/L	
			Bromodichloromethane	2020/06/04	<1.0		ug/L	
			Bromoform	2020/06/04	<1.0		ug/L	
			Bromomethane	2020/06/04	<0.50		ug/L	
			Carbon Tetrachloride	2020/06/04	<0.50		ug/L	
				2020/06/04	<0.30			
			Chlorobenzene				ug/L	
			Chloroethane	2020/06/04	<8.0		ug/L	
			Chloroform	2020/06/04	<1.0		ug/L	
			Chloromethane	2020/06/04	<8.0		ug/L	
			Dibromochloromethane	2020/06/04	<1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2020/06/04	<3.0		ug/L	
			Ethylbenzene	2020/06/04	<1.0		ug/L	
			Methyl t-butyl ether (MTBE)	2020/06/04	<2.0		ug/L	
			Styrene	2020/06/04	<1.0		ug/L	
			Tetrachloroethylene	2020/06/04	<1.0		ug/L	
			Toluene	2020/06/04	<1.0		ug/L	
			Trichloroethylene	2020/06/04	<1.0		ug/L	
			Trichlorofluoromethane (FREON 11)	2020/06/04	<8.0		ug/L	
			Vinyl Chloride	2020/06/04	<0.50		ug/L	
			o-Xylene	2020/06/04	<0.30		ug/L ug/L	
			U-Ayiche	2020/00/04	×1.0		ug/L	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			p+m-Xylene	2020/06/04	<2.0		ug/L	
			Total Xylenes	2020/06/04	<1.0		ug/L	
			Total Trihalomethanes	2020/06/04	<1.0		ug/L	
6769412	ASL	RPD [MTK169-05]	1,1-Dichloroethane	2020/06/04	NC		%	40
			1,1-Dichloroethylene	2020/06/04	NC		%	40
			1,1,1-Trichloroethane	2020/06/04	NC		%	40
			1,1,2-Trichloroethane	2020/06/04	NC		%	40
			1,1,2,2-Tetrachloroethane	2020/06/04	NC		%	40
			Ethylene Dibromide	2020/06/04	NC		%	40
			1,2-Dichlorobenzene	2020/06/04	NC		%	40
			1,2-Dichloroethane	2020/06/04	NC		%	40
			cis-1,2-Dichloroethylene	2020/06/04	1.2		%	40
			trans-1,2-Dichloroethylene	2020/06/04	NC		%	40
			1,2-Dichloropropane	2020/06/04	NC		%	40
			1,3-Dichlorobenzene	2020/06/04	NC		%	40
			cis-1,3-Dichloropropene	2020/06/04	NC		%	40
			trans-1,3-Dichloropropene	2020/06/04	NC		%	40
			1,4-Dichlorobenzene	2020/06/04	NC		%	40
			Benzene	2020/06/04	NC		%	40
			Bromodichloromethane	2020/06/04	NC		%	40
			Bromoform	2020/06/04	NC		%	40
			Bromomethane	2020/06/04	NC		%	40
			Carbon Tetrachloride	2020/06/04	NC		%	40
			Chlorobenzene	2020/06/04	NC		%	40
			Chloroethane	2020/06/04	NC		%	40
			Chloroform	2020/06/04	NC		%	40
			Chloromethane	2020/06/04	NC		%	40
			Dibromochloromethane	2020/06/04	NC		%	40
			Methylene Chloride(Dichloromethane)	2020/06/04	NC		%	40
			Ethylbenzene	2020/06/04	NC		%	40
			Methyl t-butyl ether (MTBE)	2020/06/04	NC		%	40
			Styrene	2020/06/04	NC		%	40
			Tetrachloroethylene	2020/06/04	NC		%	40
			Toluene	2020/06/04	NC		%	40
			Trichloroethylene	2020/06/04	0.78		%	40
			Trichlorofluoromethane (FREON 11)	2020/06/04	NC		%	40
			Vinyl Chloride	2020/06/04	NC		%	40
			o-Xylene	2020/06/04	NC		%	40
			p+m-Xylene	2020/06/04	NC		%	40
			Total Xylenes	2020/06/04	NC		%	40
			Total Trihalomethanes	2020/06/04	NC		%	40
6769739	MLB	Matrix Spike	Dissolved Arsenic (As)	2020/06/05	Ne	92	%	80 - 120
0/05/55	IVIED	Width Spike	Dissolved Iron (Fe)	2020/06/05		95	%	80 - 120
			Dissolved Lead (Pb)	2020/06/05		94	%	80 - 120
			Dissolved Manganese (Mn)	2020/06/05		90	%	80 - 120 80 - 120
			Dissolved Zinc (Zn)	2020/06/05		90	%	80 - 120 80 - 120
6760720		Spiked Plank	. ,	2020/06/05				
6769739	MLB	Spiked Blank	Dissolved Arsenic (As)			92 95	% %	80 - 120 80 - 120
			Dissolved Iron (Fe)	2020/06/05				80 - 120 80 - 120
			Dissolved Lead (Pb)	2020/06/05		96	%	80 - 120
			Dissolved Manganese (Mn)	2020/06/05		94	%	80 - 120
6760700			Dissolved Zinc (Zn)	2020/06/05	.4.0	95	%	80 - 120
6769739	MLB	Method Blank	Dissolved Arsenic (As)	2020/06/05	<1.0		ug/L	
			Dissolved Iron (Fe)	2020/06/05	<50		ug/L	
			Dissolved Lead (Pb)	2020/06/05	<0.50		ug/L	
1			Dissolved Manganese (Mn)	2020/06/05	<2.0		ug/L	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Butten	iiiic	QC Type	Dissolved Zinc (Zn)	2020/06/05	<5.0	necovery	ug/L	QC Linnes
6769739	MLB	RPD	Dissolved Manganese (Mn)	2020/06/05	0.48		%	20
6771614	BAN	Matrix Spike	Dissolved Arsenic (As)	2020/06/05		95	%	80 - 120
			Dissolved Iron (Fe)	2020/06/05		100	%	80 - 120
			Dissolved Lead (Pb)	2020/06/05		95	%	80 - 120
			Dissolved Manganese (Mn)	2020/06/05		NC	%	80 - 120
			Dissolved Zinc (Zn)	2020/06/05		95	%	80 - 120
6771614	BAN	Spiked Blank	Dissolved Arsenic (As)	2020/06/05		93	%	80 - 120
			Dissolved Iron (Fe)	2020/06/05		102	%	80 - 120
			Dissolved Lead (Pb)	2020/06/05		96	%	80 - 120
			Dissolved Manganese (Mn)	2020/06/05		96	%	80 - 120
			Dissolved Zinc (Zn)	2020/06/05		95	%	80 - 120
6771614	BAN	Method Blank	Dissolved Arsenic (As)	2020/06/06	<1.0		ug/L	
			Dissolved Iron (Fe)	2020/06/06	<50		ug/L	
			Dissolved Lead (Pb)	2020/06/06	<0.50		ug/L	
			Dissolved Manganese (Mn)	2020/06/06	<2.0		ug/L	
			Dissolved Zinc (Zn)	2020/06/06	<5.0		ug/L	
6771614	BAN	RPD	Dissolved Arsenic (As)	2020/06/05	NC		%	20
			Dissolved Iron (Fe)	2020/06/05	0.67		%	20
			Dissolved Lead (Pb)	2020/06/05	NC		%	20
			Dissolved Manganese (Mn)	2020/06/05	0.92		%	20
			Dissolved Zinc (Zn)	2020/06/05	13		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike The Gulle

Mike MacGillivray, Scientific Specialist (Inorganics)

Kosmain MacDonald

Rosemarie MacDonald, Scientific Specialist (Organics)

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		Bureau Veritas Laboratories 200 Bluewater Road, Bedford, Nova Sc	otia Canada B4B 1G9 Tel	:(902) 420-0203 To	oll-free:800-563-	6266 Fax	(902) 420	-8612 www	bvlabs.cor	η						Chain (Of Custody Record	Page 1 of 1
VERITAS		INVOICE TO:			Report Info	rmation							Project Info	rmation			Laboratory Use	Only
	#41009 Englo				Report and	ination		-		_	_		01957				A BV Labs Job #	Bottle Order #:
Company Name	ACCOUNTS P		Company Na	Dune Della	arin		-	-		_	tation #	-	01337			10	ADDITE	a landstation and the land
Contact Name	97 Troop Ave	ATABLE	Contact Nam	ie ityan reik				-		P.O.		20	001756			-((1) (2) (2)	774102
Address	Dartmouth NS	B3B 2A7	Address				-	_		Proje			001700	_			Chain Of Custody Record	Project Manager
Phone	(902) 468-6486		19 Phone				ax:		-	Site	ect Name	-				1		
Email		@englobecorp.com	Email	ryan.pelle	rin@englobe						# pled By	_					C#774102-01-01	Keri Mackay
Regulatory Cr	iteria:			al Instructions		-			ANAL	_	UESTED (PL	EASE BE	E SPECIFIC				Turnaround Time (TAT) Re	quired:
** Specify Ma	atrix: Surface/Ground/7 Potable/Nonpotable/Ti	fapwater/Sewage/Effluen//Seawater ssue/Soil/Sludge/Metal				eserved	bons in Water	Zn		water	- Non-Chlorinated				() S F d	will be appli Standard TA Please note: Jays - conta	Please provide advance notice for H andard) TAT: ad if Rush TAT is not specified): IT = 5-7 Working days for most tests : Standard TAT for certain tests such as BC ct your Project Manager for delais. ic Rush TAT (if applies to entire submis	D and Dioxins/Furans are > 5
	SAMPLES MUST BE H Barcode Label	KEPT COOL (< 10°C) FROM TIME OF SAM	MPLING UNTIL DELIVER	Y TO BV LABS Time Sampled	Matrix	Field Filtered & Pn Lab Filtration Requ	RBCA Hydrocarbons	As, Fe, Mn, Pb,	Hd	Conductance - v	Atlantic VOCs - Water					# of Bottles		quired:
31		MW/1	2020/05/28	12:15	GW	X	x	x	х	х								
2		MW3	20105/28	10:30	GW	X	X	x	x	x								
3		MVV4	2020/05/29	10:00	GW	X	x	×	х	х								
4		MW6	3030/05/38	14:10	GW	X	x	x	x	х	x							
5		MW9	2020/05/28	13:30	GW	Х	x	x	x	х								
6		MW11	3020/05/23	13:00	GW	Х	x	x	x	x								
7		MW14	2020/05/28	11:00	GW	Х	x	x	x	х						1		
8		TRIP BLANK	2020/05/28	_	GW	Х	x	x	x	х								2820 MAY 29 9=2
9		EQUIPMENT BLANK	2070/05/20	_	GW	Х	x	х	х	х								
10		MW-DUP	2020/05/28		GW	X	x	x	х	х								
	QUISHED BY: (Signatu		(YY/MM/DD) Time		RECEN	ED BY: (Signature/	Print)		D	ate: (YY/MM/I	(D(Time	# jars used and not submitted			Lab Use Only	
Adom	av a	C 20/	15/29 9:00							_					Time Sensi	Tem	perature (°C/ on Receipt Custo	ty Seal Intact on Cooler?
UNLESS OTH	G AT WWW.BVLABS.CO	N WRITING, WORK SUBMITTED ON THIS CH DWTERMS-AND-CONDITIONS. RELINQUISHER TO ENSURE THE ACCURAC	IAIN OF CUSTODY IS SUBJ	ECT TO BV LABS'								CUMENT	IS ACKNOW	LEDGMENT AND AC	CEPTANCE	OF OUR TE	RMS WHICH ARE AVAILABLE White:	BV Labs Yellow: Client

Bureau Veritas Canada (2019) Inc.

Your Project #: 2001756 Your C.O.C. #: 798913-01-01

Attention: Ryan Pellerin

Englobe Corp 97 Troop Ave Dartmouth, NS CANADA B3B 2A7

> Report Date: 2020/11/05 Report #: R6399437 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0S7681 Becoived: 2020/10/20, 12:1

Received: 2020/10/29, 12:15

Sample Matrix: Water # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Conductance - water	8	N/A	2020/11/04	ATL SOP 00004	SM 23 2510B m
Conductance - water	2	N/A	2020/11/05	ATL SOP 00004	SM 23 2510B m
TEH in Water (PIRI)	9	2020/11/04	2020/11/04	ATL SOP 00113	Atl. RBCA v3.1 m
TEH in Water (PIRI)	1	2020/11/04	2020/11/05	ATL SOP 00113	Atl. RBCA v3.1 m
Metals Water Diss. MS (1)	1	N/A	2020/11/03	ATL SOP 00058	EPA 6020B R2 m
Metals Water Diss. MS (as rec'd)	6	N/A	2020/11/03	ATL SOP 00058	EPA 6020B R2 m
Metals Water Diss. MS (as rec'd)	1	N/A	2020/11/04	ATL SOP 00058	EPA 6020B R2 m
Metals Water Diss. MS (as rec'd)	2	N/A	2020/11/05	ATL SOP 00058	EPA 6020B R2 m
рН (2)	8	N/A	2020/11/04	ATL SOP 00003	SM 23 4500-H+ B m
рН (2)	2	N/A	2020/11/05	ATL SOP 00003	SM 23 4500-H+ B m
ModTPH (T1) Calc. for Water	10	N/A	2020/11/05	N/A	Atl. RBCA v3 m
Volatile Organic Compounds in Water	1	N/A	2020/11/02	ATL SOP 00133	EPA 8260D R4 m
VPH in Water (PIRI)	1	N/A	2020/11/02	ATL SOP 00130	Atl. RBCA v3.1 m
VPH in Water (PIRI)	9	N/A	2020/11/03	ATL SOP 00130	Atl. RBCA v3.1 m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 18

Your Project #: 2001756 Your C.O.C. #: 798913-01-01

Attention: Ryan Pellerin

Englobe Corp 97 Troop Ave Dartmouth, NS CANADA B3B 2A7

> Report Date: 2020/11/05 Report #: R6399437 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0S7681

Received: 2020/10/29, 12:15

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Sample filtered in laboratory prior to analysis for dissolved metals.

(2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Keri Mackay, Customer Experience Team Lead Email: Keri.MACKAY@bvlabs.com Phone# (902)420-0203 Ext:294

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RBCA HYDROCARBONS IN WATER (WATER)

BV Labs ID		OAO220	OA0221	OA0222	OA0223	OAO224		
Sampling Data		2020/10/28	2020/10/28	2020/10/28	2020/10/28	2020/10/28		
Sampling Date		12:40	11:45	11:20	10:45	09:45		
COC Number		798913-01-01	798913-01-01	798913-01-01	798913-01-01	798913-01-01		
	UNITS	MW1	MW3	MW4	MW6	MW9	RDL	QC Batch
Petroleum Hydrocarbons								
Benzene	mg/L	0.0090	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	7033007
Toluene	mg/L	0.014	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	7033007
Ethylbenzene	mg/L	0.87	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	7033007
Total Xylenes	mg/L	1.0	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7033007
C6 - C10 (less BTEX)	mg/L	12	<0.090	<0.090	<0.090	<0.090	0.090	7033007
>C10-C16 Hydrocarbons	mg/L	2.7	<0.050	<0.050	<0.050	0.051	0.050	7037043
>C16-C21 Hydrocarbons	mg/L	<0.050	<0.050	<0.050	<0.050	0.21	0.050	7037043
>C21- <c32 hydrocarbons<="" p=""></c32>	mg/L	0.11	<0.090	<0.090	<0.090	1.3	0.090	7037043
Modified TPH (Tier1)	mg/L	14	<0.090	<0.090	<0.090	1.5	0.090	7030167
Reached Baseline at C32	mg/L	Yes	NA	NA	NA	Yes	N/A	7037043
Hydrocarbon Resemblance	mg/L	COMMENT (1)	NA	NA	NA	COMMENT (2)	N/A	7037043
Surrogate Recovery (%)								
Isobutylbenzene - Extractable	%	114	102	109	102	103		7037043
n-Dotriacontane - Extractable	%	117	112 (3)	116 (3)	109	102	1	7037043
Isobutylbenzene - Volatile	%	100	101	100	99	101		7033007
PDL - Papartable Detection Lin					4	ł		

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

(1) One product in the gasoline range. Unidentified compound(s) in lube oil range.

(2) Lube oil fraction.

(3) TEH sample contained sediment.

RBCA HYDROCARBONS IN WATER (WATER)

BV Labs ID		OAO225		OAO226			OAO226		
Sampling Date		2020/10/28		2020/10/28			2020/10/28		
		10:30		12:05			12:05		
COC Number		798913-01-01		798913-01-01			798913-01-01		
	UNITS	MW11	QC Batch	MW14	RDL	QC Batch	MW14	RDL	QC Batch
	ONITS	1010011	QC Daten	1010014	NDL	QC Datch	Lab-Dup	NDL	QC Daten
Petroleum Hydrocarbons									
Benzene	mg/L	<0.0010	7033007	<0.0010	0.0010	7033010	<0.0010	0.0010	7033010
Toluene	mg/L	<0.0010	7033007	<0.0010	0.0010	7033010	<0.0010	0.0010	7033010
Ethylbenzene	mg/L	<0.0010	7033007	<0.0010	0.0010	7033010	<0.0010	0.0010	7033010
Total Xylenes	mg/L	<0.0020	7033007	<0.0020	0.0020	7033010	<0.0020	0.0020	7033010
C6 - C10 (less BTEX)	mg/L	<0.090	7033007	<0.090	0.090	7033010	<0.090	0.090	7033010
>C10-C16 Hydrocarbons	mg/L	0.24	7037043	<0.050	0.050	7037043			
>C16-C21 Hydrocarbons	mg/L	0.76	7037043	<0.050	0.050	7037043			
>C21- <c32 hydrocarbons<="" p=""></c32>	mg/L	7.7	7037043	<0.090	0.090	7037043			
Modified TPH (Tier1)	mg/L	8.7	7030167	<0.090	0.090	7030167			
Reached Baseline at C32	mg/L	No	7037043	NA	N/A	7037043			
Hydrocarbon Resemblance	mg/L	COMMENT (1)	7037043	NA	N/A	7037043			
Surrogate Recovery (%)								-	
Isobutylbenzene - Extractable	%	109	7037043	103		7037043			
n-Dotriacontane - Extractable	%	115	7037043	112 (2)		7037043			
Isobutylbenzene - Volatile	%	101	7033007	91		7033010	90		7033010
RDL = Reportable Detection Lin	nit								
QC Batch = Quality Control Bate	ch								

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) One product in fuel oil range. Lube oil fraction.

(2) TEH sample contained sediment.

BV Labs ID OAO227 OAO228 OAO229 Sampling Date 2020/10/28 2020/10/28 2020/10/28 COC Number 798913-01-01 798913-01-01 798913-01-01 UNITS TRIP BLANK EQUIPMENT BLANK MW-DUP RDL QC Batch Petroleum Hydrocarbons Benzene mg/L < 0.0010 < 0.0010 < 0.0010 0.0010 7033010 Toluene < 0.0010 < 0.0010 < 0.0010 0.0010 7033010 mg/L Ethylbenzene mg/L < 0.0010 < 0.0010 < 0.0010 0.0010 7033010 Total Xylenes mg/L < 0.0020 <0.0020 <0.0020 0.0020 7033010 C6 - C10 (less BTEX) mg/L < 0.090 < 0.090 < 0.090 0.090 7033010 >C10-C16 Hydrocarbons < 0.050 < 0.050 < 0.050 0.050 7037043 mg/L >C16-C21 Hydrocarbons mg/L <0.050 <0.050 <0.050 0.050 7037043 >C21-<C32 Hydrocarbons < 0.090 <0.090 7037043 mg/L < 0.090 0.090 Modified TPH (Tier1) mg/L <0.090 <0.090 <0.090 0.090 7030167 Reached Baseline at C32 mg/L NA NA NA N/A 7037043 Hydrocarbon Resemblance 7037043 mg/L NA NA NA N/A Surrogate Recovery (%) Isobutylbenzene - Extractable 104 104 7037043 % 102 n-Dotriacontane - Extractable 7037043 % 108 113 110 (1) Isobutylbenzene - Volatile 7033010 % 95 95 98 RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable(1) TEH sample contained sediment.

RBCA HYDROCARBONS IN WATER (WATER)

Page 5 of 18 Bureau Veritas Laboratories 200 Bluewater Rd, Suite 105, Bedford, Nova Scotia Canada B4B 1G9 Tel: 902-420-0203 Toll-free: 800-565-7227 Fax: 902-420-8612 www.bvlabs.com

BV Labs ID		OAO223		
Sampling Data		2020/10/28		
Sampling Date		10:45		
COC Number		798913-01-01		
	UNITS	MW6	RDL	QC Batc
Volatile Organics				
1,1-Dichloroethane	ug/L	<2.0	2.0	7032380
1,1-Dichloroethylene	ug/L	<0.50	0.50	703238
1,1,1-Trichloroethane	ug/L	<1.0	1.0	7032380
1,1,2-Trichloroethane	ug/L	<1.0	1.0	703238
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	7032380
Ethylene Dibromide	ug/L	<0.20	0.20	703238
1,2-Dichlorobenzene	ug/L	<0.50	0.50	7032380
1,2-Dichloroethane	ug/L	<1.0	1.0	7032380
cis-1,2-Dichloroethylene	ug/L	8.6	0.50	703238
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	703238
1,2-Dichloropropane	ug/L	<0.50	0.50	703238
1,3-Dichlorobenzene	ug/L	<1.0	1.0	703238
cis-1,3-Dichloropropene	ug/L	<0.50	0.50	703238
trans-1,3-Dichloropropene	ug/L	<0.50	0.50	703238
1,4-Dichlorobenzene	ug/L	<1.0	1.0	703238
Benzene	ug/L	<1.0	1.0	703238
Bromodichloromethane	ug/L	<1.0	1.0	703238
Bromoform	ug/L	<1.0	1.0	703238
Bromomethane	ug/L	<0.50	0.50	703238
Carbon Tetrachloride	ug/L	<0.50	0.50	703238
Chlorobenzene	ug/L	<1.0	1.0	703238
Chloroethane	ug/L	<8.0	8.0	703238
Chloroform	ug/L	<1.0	1.0	703238
Chloromethane	ug/L	<8.0	8.0	7032380
Dibromochloromethane	ug/L	<1.0	1.0	7032380
Methylene Chloride(Dichloromethane)	ug/L	<3.0	3.0	7032380
Ethylbenzene	ug/L	<1.0	1.0	7032380
Methyl t-butyl ether (MTBE)	ug/L	<2.0	2.0	7032380
Styrene	ug/L	<1.0	1.0	703238
Tetrachloroethylene	ug/L	<1.0	1.0	703238
Toluene	ug/L	<1.0	1.0	703238
Trichloroethylene	ug/L	34	1.0	703238
Trichlorofluoromethane (FREON 11)	ug/L	<8.0	8.0	703238
Vinyl Chloride	ug/L	2.3	0.50	703238
p-Xylene	ug/L	<1.0	1.0	703238
RDL = Reportable Detection Limit				

ATLANTIC VOCS - NON-CHLORINATED WATER (WATER)

BV Labs ID		OA0223		
Sampling Date		2020/10/28		
Sampling Date		10:45		
COC Number		798913-01-01		
	UNITS	MW6	RDL	QC Batch
p+m-Xylene	ug/L	<2.0	2.0	7032380
Total Xylenes	ug/L	<1.0	1.0	7032380
Total Trihalomethanes	ug/L	<1.0	1.0	7032380
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	97		7032380
D4-1,2-Dichloroethane	%	100		7032380
D8-Toluene	%	96		7032380
RDL = Reportable Detection Limit			-	
QC Batch = Quality Control Batch				

ATLANTIC VOCS - NON-CHLORINATED WATER (WATER)

RESULTS OF ANALYSES OF WATER

Sampling Date 12:40 11:45 11:20 10:45 09:45 10:30 COC Number 798913-01-01 700 640 DH DH 7.03 6.91 6.57 6.40 7.39 7.38 Conductivity uS/cm 3300 680 330 210 700 640 RDL Reportable Detection Limit QC OAO226 OAO227 OAO228 OAO229 Sampling Date 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/	Labs ID		OAO220	OA0221	OAO222	OAO223	OA0224	OAO225		
Image: Notice of the system	maling Data		2020/10/28	2020/10/28	3 2020/10/2	8 2020/10/28	2020/10/28	2020/10/28		
UNITS MW1 MW3 MW4 MW6 MW9 MW11 norganics pH 7.03 6.91 6.57 6.40 7.39 7.38 Onductivity uS/cm 3300 680 330 210 700 640 RDL = Reportable Detection Limit QC Batch = Quality Control Batch OAO226 OAO227 OAO228 OAO229 Sampling Date 2020/10/28 12:05 2020/10/28 2020/10/28 2020/10/28 2020/10/28 COC Number 798913-01-01 798913-01-01 798913-01-01 798913-01-01 Inorganics UNITS MW14 QC Batch TRIP BLANK EQUIPMENT BLANK QC Batch MW-DUP	inpling Date		12:40	11:45	11:20	10:45	09:45	10:30		
Internorganics PH 7.03 6.91 6.57 6.40 7.39 7.38 Conductivity uS/cm 3300 680 330 210 700 640 RDL = Reportable Detection Limit QC Batch = Quality Control Batch OAO226 OAO227 OAO228 OAO229 Sampling Date 2020/10/28 12:05 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 COC Number 798913-01-01 798913-01-01 798913-01-01 798913-01-01 798913-01-01 Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics	C Number		798913-01-01	798913-01-0	1 798913-01-	01 798913-01-01	798913-01-01	798913-01-02	L	
DH PH 7.03 6.91 6.57 6.40 7.39 7.38 Conductivity uS/cm 3300 680 330 210 700 640 RDL = Reportable Detection Limit Conductivity 0A0226 0A0227 0A0228 0A0229 Sampling Date 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 COC Number 798913-01-01 798913-01-01 798913-01-01 798913-01-01 798913-01-01 Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics		UNITS	MW1	MW3	MW4	MW6	MW9	MW11	RD	L QC Batcl
Conductivity uS/cm 3300 680 330 210 700 640 RDL = Reportable Detection Limit QC Batch = Quality Control Batch OAO226 OAO227 OAO228 OAO229 BV Labs ID OAO226 OAO227 OAO228 OAO229 Sampling Date 2020/10/28 12:05 2020/10/28 2020/10/28 2020/10/28 2020/10/28 COC Number 798913-01-01 798913-01-01 798913-01-01 798913-01-01 UNITS MW14 QC Batch TRIP BLANK EQUIPMENT BLANK QC Batch MW-DUP Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics	organics									
RDL = Reportable Detection Limit QC Batch = Quality Control Batch BV Labs ID OA0226 OA0227 OA0228 OA0229 Sampling Date 2020/10/28 12:05 2020/10/28 2020/10/28 2020/10/28 2020/10/28 COC Number 798913-01-01 798913-01-01 798913-01-01 798913-01-01 798913-01-01 Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics		рН	7.03	6.91	6.57	6.40	7.39	7.38		7036961
BV Labs ID OAO226 OAO227 OAO228 OAO229 Sampling Date 2020/10/28 12:05 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 COC Number 798913-01-01 798913-01-01 798913-01-01 798913-01-01 798913-01-01 UNITS MW14 QC Batch TRIP BLANK EQUIPMENT BLANK QC Batch MW-DUP Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics	nductivity	uS/cm	3300	680	330	210	700	640	1.0	7036958
BV Labs ID OA0226 OA0227 OA0228 OA0229 Sampling Date 2020/10/28 12:05 2020/10/28 2020/10/28 2020/10/28 2020/10/28 2020/10/28 COC Number 798913-01-01 798913-01-01 798913-01-01 798913-01-01 798913-01-01 UNITS MW14 QC Batch TRIP BLANK EQUIPMENT BLANK QC Batch MW-DUP Inorganics Inorganics Inorganics Inorganics Inorganics Inorganics	L = Reportable Detection L	imit								
Sampling Date 2020/10/28 12:05 2020/10/28 <t< td=""><td>Batch = Quality Control Ba</td><td>atch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Batch = Quality Control Ba	atch								
Sampling Date 12:05 2020/10/28 2020/10/2	V Labs ID		OAO226		OA0227	OA0228		OA0229		
UNITS MW14 QC Batch TRIP BLANK EQUIPMENT BLANK QC Batch MW-DUP Inorganics	ampling Date				2020/10/28	2020/10/28		2020/10/28		
Inorganics	OC Number		798913-01-01		798913-01-01	798913-01-01		798913-01-01		
		UNITS	MW14	QC Batch	TRIP BLANK	EQUIPMENT BLAN	K QC Batch	MW-DUP	RDL	QC Batch
	norganics		<u>.</u>							
pH pH 6.58 7039390 5.99 6.62 7036961 6.63	Н	pН	6.58	7039390	5.99	6.62	7036961	6.63		7039390
Conductivity uS/cm 630 7039388 <1.0 17 7036958 640		uS/cm	630	7039388	<1.0	17	7036958	640	1.0	7039388
RDL = Reportable Detection Limit	onductivity									

ELEMENTS BY ICP/MS (WATER)

SV Labs ID			0220	OAC			OA0222			0223)224		
Sampling Date			10/28	2020/			2020/10/2	8	2020/		•	10/28		
		-	:40		:45		11:20			:45		:45		
COC Number		798913	3-01-01	798913	8-01-01		798913-01-0	01	798913	3-01-01	798913	3-01-01		
	UNITS	M١	W1	M\	N3	QC Batc	n MW4	QC Batch	M١	N6	M۱	W9	RDL	QC E
Metals														
Dissolved Arsenic (As)	ug/L	3.	.1	2.	.0	7034902	2 <1.0	7034906	<1	.0	<1	L.O	1.0	703
Dissolved Iron (Fe)	ug/L	140	000	94	00	7034902	2 <50	7034906	<[50	15	00	50	703
Dissolved Lead (Pb)	ug/L	<0	.50	<0.	.50	7034902	<0.50	7034906	<0	.50	<0.	.50	0.50	703
Dissolved Manganese (Mn)	ug/L	150	000	57	00	7034902	4200	7034906	3	7	14	00	2.0	703
Dissolved Zinc (Zn)	ug/L	<5	5.0	<5	.0	7034902	2 47	7034906	7.	.4	5.	.9	5.0	703
BV Labs ID			OAO)225	OAC	0226	0A0227	0A022	8	OAC	0229			
BV Labs ID			OAC 2020/		OAC 2020/	0226 10/28	OAO227	OA022		0AC				
BV Labs ID Sampling Date			2020/		2020/		OAO227 2020/10/28	OAO22 2020/10,		OAC 2020/				
			2020/	10/28 :30	2020/	10/28 :05			/28		10/28			
Sampling Date		UNITS	2020/ 10	10/28 :30 8-01-01	2020/ 12 798913	10/28 :05	2020/10/28	2020/10	/28 1-01	2020/	10/28 8-01-01	RDL	QC Bat	ch
Sampling Date		UNITS	2020/ 10 798913	10/28 :30 8-01-01	2020/ 12 798913	10/28 :05 3-01-01	2020/10/28 798913-01-01	2020/10, 798913-0	/28 1-01	2020/ 798913	10/28 8-01-01	RDL	QC Bat	ch
Sampling Date COC Number		UNITS ug/L	2020/ 10 798913	10/28 :30 3-01-01 V11	2020/ 12 798913 MV	10/28 :05 3-01-01	2020/10/28 798913-01-01	2020/10, 798913-0	/28 1-01	2020/ 798913	10/28 3-01-01 • DUP		QC Bat	
Sampling Date COC Number Metals			2020/ 10 798913 MW	10/28 :30 3-01-01 V11 .3	2020/ 12 798913 MV	10/28 :05 3-01-01 7 V14	2020/10/28 /98913-01-01 TRIP BLANK	2020/10, 798913-0 EQUIPMENT	/28 1-01	2020/ 798913 MW -	10/28 3-01-01 • DUP	1.0	-	02
Sampling Date COC Number Metals Dissolved Arsenic (As)		ug/L	2020/ 10 798913 MW 1.	10/28 :30 3-01-01 V11 .3 00	2020/ 12 798913 MV <1	10/28 :05 3-01-01 7 V14	2020/10/28 /98913-01-01 TRIP BLANK <1.0	2020/10, 798913-0 EQUIPMENT <1.0	/28 1-01 BLANK	2020/ 798913 MW - <1	10/28 3-01-01 • DUP 0	1.0 50	703490	02 02
Sampling Date COC Number Metals Dissolved Arsenic (As) Dissolved Iron (Fe)		ug/L ug/L	2020/ 10 798913 MW 1.	10/28 :30 3-01-01 V11 .3 .00 .50	2020/ 12 798913 MW <1 <1 <5 <0.	10/28 :05 3-01-01 7 V14 0	2020/10/28 /98913-01-01 TRIP BLANK <1.0 <50	2020/10, 798913-0 EQUIPMENT <1.0 <50	/28 1-01 BLANK	2020/ 798913 MW- <1 <1	10/28 3-01-01 • DUP 0 50	1.0 50 0.50	703490	02 02 02

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 4.3°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7032380	ASL	Matrix Spike	4-Bromofluorobenzene	2020/11/02	Value	99	%	70 - 130
7052500	AJL		D4-1,2-Dichloroethane	2020/11/02		104	%	70 - 130
			D8-Toluene	2020/11/02		93	%	70 - 130
			1,1-Dichloroethane	2020/11/02		99	%	70 - 130
			1,1-Dichloroethylene	2020/11/02		99 97	%	70 - 130
			1,1,1-Trichloroethane	2020/11/02		101	%	70 - 130
			1,1,2-Trichloroethane	2020/11/02		101		
			1,1,2,2-Tetrachloroethane	2020/11/02		97	% %	70 - 130 70 - 130
								70 - 130
			Ethylene Dibromide	2020/11/02		102 91	% %	70 - 130 70 - 130
			1,2-Dichlorobenzene	2020/11/02 2020/11/02		89	%	70 - 130 70 - 130
			1,2-Dichloroethane			89 94		
			cis-1,2-Dichloroethylene	2020/11/02		94 99	% %	70 - 130 70 - 130
			trans-1,2-Dichloroethylene	2020/11/02				
			1,2-Dichloropropane	2020/11/02		92	%	70 - 130
			1,3-Dichlorobenzene	2020/11/02		92	%	70 - 130
			cis-1,3-Dichloropropene	2020/11/02		95	%	70 - 130
			trans-1,3-Dichloropropene	2020/11/02		98	%	70 - 130
			1,4-Dichlorobenzene	2020/11/02		91	%	70 - 130
			Benzene	2020/11/02		91	%	70 - 130
			Bromodichloromethane	2020/11/02		96	%	70 - 130
			Bromoform	2020/11/02		104	%	70 - 130
			Bromomethane	2020/11/02		93	%	60 - 140
			Carbon Tetrachloride	2020/11/02		95	%	70 - 130
			Chlorobenzene	2020/11/02		102	%	70 - 130
			Chloroethane	2020/11/02		93	%	60 - 140
			Chloroform	2020/11/02		96	%	70 - 130
			Chloromethane	2020/11/02		78	%	60 - 140
			Dibromochloromethane	2020/11/02		89	%	70 - 130
			Methylene Chloride(Dichloromethane)	2020/11/02		95	%	70 - 130
			Ethylbenzene	2020/11/02		99	%	70 - 130
			Methyl t-butyl ether (MTBE)	2020/11/02		97	%	70 - 130
			Styrene	2020/11/02		96	%	70 - 130
			Tetrachloroethylene	2020/11/02		94	%	70 - 130
			Toluene	2020/11/02		90	%	70 - 130
			Trichloroethylene	2020/11/02		90	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2020/11/02		92	%	60 - 140
			Vinyl Chloride	2020/11/02		99	%	60 - 140
			o-Xylene	2020/11/02		97	%	70 - 130
			p+m-Xylene	2020/11/02		98	%	70 - 130
7032380	ASL	Spiked Blank	4-Bromofluorobenzene	2020/11/02		98	%	70 - 130
			D4-1,2-Dichloroethane	2020/11/02		105	%	70 - 130
			D8-Toluene	2020/11/02		98	%	70 - 130
			1,1-Dichloroethane	2020/11/02		104	%	70 - 130
			1,1-Dichloroethylene	2020/11/02		97	%	70 - 130
			1,1,1-Trichloroethane	2020/11/02		106	%	70 - 130
			1,1,2-Trichloroethane	2020/11/02		107	%	70 - 130
			1,1,2,2-Tetrachloroethane	2020/11/02		97	%	70 - 130
			Ethylene Dibromide	2020/11/02		106	%	70 - 130
			1,2-Dichlorobenzene	2020/11/02		94	%	70 - 130
			1,2-Dichloroethane	2020/11/02		100	%	70 - 130
			cis-1,2-Dichloroethylene	2020/11/02		97	%	70 - 130
			trans-1,2-Dichloroethylene	2020/11/02		102	%	70 - 130
			1,2-Dichloropropane	2020/11/02		103	%	70 - 130
			1,3-Dichlorobenzene	2020/11/02		96	%	70 - 130
			cis-1,3-Dichloropropene	2020/11/02		105	%	70 - 130

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init		Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
υαιτιί	niit	QC Туре	trans-1,3-Dichloropropene	2020/11/02	value	109	<u> </u>	70 - 130
			1,4-Dichlorobenzene	2020/11/02		96	%	70 - 130
			Benzene	2020/11/02		100	%	70 - 130
			Bromodichloromethane	2020/11/02		100	%	70 - 130
			Bromoform	2020/11/02		101	%	70 - 130
			Bromomethane	2020/11/02		93	%	60 - 140
			Carbon Tetrachloride	2020/11/02		100	%	70 - 130
			Chlorobenzene	2020/11/02		104	%	70 - 130
			Chloroethane	2020/11/02		93	%	60 - 140
			Chloroform	2020/11/02		99	%	70 - 130
			Chloromethane	2020/11/02		113	%	60 - 140
			Dibromochloromethane	2020/11/02		93	%	70 - 130
			Methylene Chloride(Dichloromethane)	2020/11/02		92	%	70 - 130
			Ethylbenzene	2020/11/02		99	%	70 - 130
			Methyl t-butyl ether (MTBE)	2020/11/02		102	%	70 - 130
			Styrene	2020/11/02		103	%	70 - 130
			Tetrachloroethylene	2020/11/02		99	%	70 - 130
			Toluene	2020/11/02		96	%	70 - 130
			Trichloroethylene	2020/11/02		100	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2020/11/02		92	%	60 - 140
			Vinyl Chloride	2020/11/02		99	%	60 - 140
			o-Xylene	2020/11/02		99	%	70 - 130
			p+m-Xylene	2020/11/02		94	%	70 - 130
7032380	ASL	Method Blank	4-Bromofluorobenzene	2020/11/02		100	%	70 - 130
			D4-1,2-Dichloroethane	2020/11/02		98	%	70 - 130
			D8-Toluene	2020/11/02		101	%	70 - 130
			1,1-Dichloroethane	2020/11/02	<2.0		ug/L	
			1,1-Dichloroethylene	2020/11/02	<0.50		ug/L	
			1,1,1-Trichloroethane	2020/11/02	<1.0		ug/L	
			1,1,2-Trichloroethane	2020/11/02	<1.0		ug/L	
			1,1,2,2-Tetrachloroethane	2020/11/02	<0.50		ug/L	
			Ethylene Dibromide	2020/11/02	<0.20		ug/L	
			1,2-Dichlorobenzene	2020/11/02	<0.50		ug/L	
			1,2-Dichloroethane	2020/11/02	<1.0		ug/L	
			cis-1,2-Dichloroethylene	2020/11/02	<0.50		ug/L	
			trans-1,2-Dichloroethylene	2020/11/02	<0.50		ug/L	
			1,2-Dichloropropane 1.3-Dichlorobenzene	2020/11/02	<0.50 <1.0		ug/L	
			cis-1,3-Dichloropropene	2020/11/02 2020/11/02	<0.50		ug/L	
			trans-1,3-Dichloropropene	2020/11/02	<0.50		ug/L	
			1,4-Dichlorobenzene	2020/11/02	<0.30		ug/L ug/L	
			Benzene	2020/11/02	<1.0		ug/L ug/L	
			Bromodichloromethane	2020/11/02	<1.0		ug/L	
			Bromoform	2020/11/02	<1.0		ug/L	
			Bromomethane	2020/11/02	<0.50		ug/L	
			Carbon Tetrachloride	2020/11/02	<0.50		ug/L	
			Chlorobenzene	2020/11/02	<1.0		ug/L	
			Chloroethane	2020/11/02	<8.0		ug/L	
			Chloroform	2020/11/02	<1.0		ug/L	
			Chloromethane	2020/11/02	<8.0		ug/L	
			Dibromochloromethane	2020/11/02	<1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2020/11/02	<3.0		ug/L	
			Ethylbenzene	2020/11/02	<1.0		ug/L	
			Methyl t-butyl ether (MTBE)	2020/11/02	<2.0		ug/L	
			, , - , ,	2020/11/02	<1.0		ug/L	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		<i>.</i> .	Tetrachloroethylene	2020/11/02	<1.0		ug/L	
			Toluene	2020/11/02	<1.0		ug/L	
			Trichloroethylene	2020/11/02	<1.0		ug/L	
			Trichlorofluoromethane (FREON 11)	2020/11/02	<8.0		ug/L	
			Vinyl Chloride	2020/11/02	<0.50		ug/L	
			o-Xylene	2020/11/02	<1.0		ug/L	
			p+m-Xylene	2020/11/02	<2.0		ug/L	
			Total Xylenes	2020/11/02	<1.0		ug/L	
			Total Trihalomethanes	2020/11/02	<1.0		ug/L	
7032380	ASL	RPD	1,1-Dichloroethane	2020/11/02	NC		%	40
			1,1-Dichloroethylene	2020/11/02	NC		%	40
			1,1,1-Trichloroethane	2020/11/02	NC		%	40
			1,1,2-Trichloroethane	2020/11/02	NC		%	40
			1,1,2,2-Tetrachloroethane	2020/11/02	NC		%	40
			Ethylene Dibromide	2020/11/02	NC		%	40
			1,2-Dichlorobenzene	2020/11/02	NC		%	40
			1,2-Dichloroethane	2020/11/02	NC		%	40
			cis-1,2-Dichloroethylene	2020/11/02	NC		%	40
			trans-1,2-Dichloroethylene	2020/11/02	NC		%	40
			1,2-Dichloropropane	2020/11/02	NC		%	40
			1,3-Dichlorobenzene	2020/11/02	NC		%	40
			cis-1,3-Dichloropropene	2020/11/02	NC		%	40 40
					NC			
			trans-1,3-Dichloropropene	2020/11/02			%	40
			1,4-Dichlorobenzene	2020/11/02	NC		%	40
			Benzene	2020/11/02	NC		%	40
			Bromodichloromethane	2020/11/02	NC		%	40
			Bromoform	2020/11/02	NC		%	40
			Bromomethane	2020/11/02	NC		%	40
			Carbon Tetrachloride	2020/11/02	NC		%	40
			Chlorobenzene	2020/11/02	NC		%	40
			Chloroethane	2020/11/02	NC		%	40
			Chloroform	2020/11/02	NC		%	40
			Chloromethane	2020/11/02	NC		%	40
			Dibromochloromethane	2020/11/02	NC		%	40
			Methylene Chloride(Dichloromethane)	2020/11/02	NC		%	40
			Ethylbenzene	2020/11/02	NC		%	40
			Methyl t-butyl ether (MTBE)	2020/11/02	NC		%	40
			Styrene	2020/11/02	NC		%	40
			Tetrachloroethylene	2020/11/02	NC		%	40
			Toluene	2020/11/02	NC		%	40
			Trichloroethylene	2020/11/02	NC		%	40
			Trichlorofluoromethane (FREON 11)	2020/11/02	NC		%	40
			Vinyl Chloride	2020/11/02	NC		%	40
			o-Xylene	2020/11/02	NC		%	40
			p+m-Xylene	2020/11/02	NC		%	40
			Total Xylenes	2020/11/02	NC		%	40
			Total Trihalomethanes	2020/11/02	NC		%	40
7033007	THL	Matrix Spike	Isobutylbenzene - Volatile	2020/11/02		99	%	70 - 130
			Benzene	2020/11/02		93	%	70 - 130
			Toluene	2020/11/02		96	%	70 - 130
			Ethylbenzene	2020/11/02		95	%	70 - 130
			Total Xylenes	2020/11/02		98	%	70 - 130
7033007	THL	Spiked Blank	Isobutylbenzene - Volatile	2020/11/02		102	%	70 - 130
			Benzene	2020/11/02		93	%	70 - 130
			Toluene	2020/11/02		97	%	70 - 130

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC	1	00 T	Deremeter		\/-l	D		0611
Batch	Init	QC Type	Parameter	Date Analyzed 2020/11/02	Value	Recovery	UNITS	QC Limits
			Ethylbenzene			97	%	70 - 130
7022007	T 111	Mathe ad Diauli	Total Xylenes	2020/11/02		98	%	70 - 130
7033007	THL	Method Blank	Isobutylbenzene - Volatile	2020/11/02	-0.0010	100	%	70 - 130
			Benzene	2020/11/02	<0.0010		mg/L	
			Toluene	2020/11/02	<0.0010		mg/L	
			Ethylbenzene	2020/11/02	<0.0010		mg/L	
			Total Xylenes	2020/11/02	<0.0020		mg/L	
			C6 - C10 (less BTEX)	2020/11/02	<0.090		mg/L	
7033007	THL	RPD	Benzene	2020/11/02	NC		%	40
			Toluene	2020/11/02	NC		%	40
			Ethylbenzene	2020/11/02	NC		%	40
			Total Xylenes	2020/11/02	NC		%	40
			C6 - C10 (less BTEX)	2020/11/02	NC		%	40
7033010	THL	Matrix Spike [OAO227-02]	Isobutylbenzene - Volatile	2020/11/03		92	%	70 - 130
			Benzene	2020/11/03		86	%	70 - 130
			Toluene	2020/11/03		94	%	70 - 130
			Ethylbenzene	2020/11/03		92	%	70 - 130
			Total Xylenes	2020/11/03		97	%	70 - 130
7033010	THL	Spiked Blank	Isobutylbenzene - Volatile	2020/11/02		98	%	70 - 130
			Benzene	2020/11/02		91	%	70 - 130
			Toluene	2020/11/02		99	%	70 - 130
			Ethylbenzene	2020/11/02		97	%	70 - 130
			, Total Xylenes	2020/11/02		100	%	70 - 130
7033010	THL	Method Blank	Isobutylbenzene - Volatile	2020/11/02		97	%	70 - 130
			Benzene	2020/11/02	<0.0010		mg/L	
			Toluene	2020/11/02	<0.0010		mg/L	
			Ethylbenzene	2020/11/02	<0.0010		mg/L	
			Total Xylenes	2020/11/02	<0.0020		mg/L	
			C6 - C10 (less BTEX)	2020/11/02	<0.090		mg/L	
7033010	THL	RPD [OAO226-02]	Benzene	2020/11/02	NC		%	40
/035010			Toluene	2020/11/03	NC		%	40
			Ethylbenzene	2020/11/03	NC		%	40
			•	2020/11/03	NC		%	40 40
			Total Xylenes		NC		%	40 40
7024002		Matuin Calles	C6 - C10 (less BTEX)	2020/11/03	NC	0.4		
7034902	BAN	Matrix Spike	Dissolved Arsenic (As)	2020/11/03		94	%	80 - 120
			Dissolved Iron (Fe)	2020/11/03		NC	%	80 - 120
			Dissolved Lead (Pb)	2020/11/03		99	%	80 - 120
			Dissolved Manganese (Mn)	2020/11/03		NC	%	80 - 120
			Dissolved Zinc (Zn)	2020/11/03		99	%	80 - 120
7034902	BAN	Spiked Blank	Dissolved Arsenic (As)	2020/11/03		93	%	80 - 120
			Dissolved Iron (Fe)	2020/11/03		98	%	80 - 120
			Dissolved Lead (Pb)	2020/11/03		99	%	80 - 120
			Dissolved Manganese (Mn)	2020/11/03		97	%	80 - 120
			Dissolved Zinc (Zn)	2020/11/03		98	%	80 - 120
7034902	BAN	Method Blank	Dissolved Arsenic (As)	2020/11/03	<1.0		ug/L	
			Dissolved Iron (Fe)	2020/11/03	<50		ug/L	
			Dissolved Lead (Pb)	2020/11/03	<0.50		ug/L	
			Dissolved Manganese (Mn)	2020/11/03	<2.0		ug/L	
			Dissolved Zinc (Zn)	2020/11/03	<5.0		ug/L	
7034902	BAN	RPD	Dissolved Arsenic (As)	2020/11/03	NC		%	20
			Dissolved Iron (Fe)	2020/11/03	0.10		%	20
			Dissolved Lead (Pb)	2020/11/03	NC		%	20
			Dissolved Manganese (Mn)	2020/11/03	0.95		%	20
			Dissolved Zinc (Zn)	2020/11/03	2.9		%	20

Bureau Veritas Laboratories 200 Bluewater Rd, Suite 105, Bedford, Nova Scotia Canada B4B 1G9 Tel: 902-420-0203 Toll-free: 800-565-7227 Fax: 902-420-8612 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7034906	BAN	Matrix Spike	Dissolved Arsenic (As)	2020/11/03		95	%	80 - 120
			Dissolved Iron (Fe)	2020/11/03		97	%	80 - 120
			Dissolved Lead (Pb)	2020/11/03		99	%	80 - 120
			Dissolved Manganese (Mn)	2020/11/03		95	%	80 - 120
			Dissolved Zinc (Zn)	2020/11/03		99	%	80 - 120
7034906	BAN	Spiked Blank	Dissolved Arsenic (As)	2020/11/03		92	%	80 - 120
			Dissolved Iron (Fe)	2020/11/03		98	%	80 - 120
			Dissolved Lead (Pb)	2020/11/03		98	%	80 - 120
			Dissolved Manganese (Mn)	2020/11/03		97	%	80 - 120
			Dissolved Zinc (Zn)	2020/11/03		99	%	80 - 120
7034906	BAN	Method Blank	Dissolved Arsenic (As)	2020/11/03	<1.0		ug/L	
			Dissolved Iron (Fe)	2020/11/03	<50		ug/L	
			Dissolved Lead (Pb)	2020/11/03	<0.50		ug/L	
			Dissolved Manganese (Mn)	2020/11/03	<2.0		ug/L	
			Dissolved Zinc (Zn)	2020/11/03	<5.0		ug/L	
7034906	BAN	RPD	Dissolved Arsenic (As)	2020/11/03	NC		%	20
			Dissolved Iron (Fe)	2020/11/03	NC		%	20
			Dissolved Lead (Pb)	2020/11/03	NC		%	20
			Dissolved Manganese (Mn)	2020/11/03	2.9		%	20
			Dissolved Zinc (Zn)	2020/11/03	NC		%	20
7036958	SHW	Spiked Blank	Conductivity	2020/11/04		101	%	80 - 120
7036958	SHW	Method Blank	Conductivity	2020/11/04	1.0,		uS/cm	
					RDL=1.0 (1)			
7036958	SHW	RPD	Conductivity	2020/11/04	0.51		%	10
7036961	SHW	Spiked Blank	рН	2020/11/04		100	%	97 - 103
7036961	SHW	RPD	рН	2020/11/04	0.039		%	N/A
7037043	DBF	Matrix Spike	Isobutylbenzene - Extractable	2020/11/04		102	%	70 - 130
			n-Dotriacontane - Extractable	2020/11/04		104	%	70 - 130
			>C10-C16 Hydrocarbons	2020/11/04		99	%	70 - 130
			>C16-C21 Hydrocarbons	2020/11/04		100	%	70 - 130
			>C21- <c32 hydrocarbons<="" td=""><td>2020/11/04</td><td></td><td>94</td><td>%</td><td>70 - 130</td></c32>	2020/11/04		94	%	70 - 130
7037043	DBF	Spiked Blank	Isobutylbenzene - Extractable	2020/11/04		97	%	70 - 130
			n-Dotriacontane - Extractable	2020/11/04		106	%	70 - 130
			>C10-C16 Hydrocarbons	2020/11/04		100	%	70 - 130
			>C16-C21 Hydrocarbons	2020/11/04		100	%	70 - 130
			>C21- <c32 hydrocarbons<="" td=""><td>2020/11/04</td><td></td><td>91</td><td>%</td><td>70 - 130</td></c32>	2020/11/04		91	%	70 - 130
7037043	DBF	Method Blank	Isobutylbenzene - Extractable	2020/11/04		91	%	70 - 130
			n-Dotriacontane - Extractable	2020/11/04		107	%	70 - 130
			>C10-C16 Hydrocarbons	2020/11/04	<0.050		mg/L	
			>C16-C21 Hydrocarbons	2020/11/04	<0.050		mg/L	
			>C21- <c32 hydrocarbons<="" td=""><td>2020/11/04</td><td><0.090</td><td></td><td>mg/L</td><td></td></c32>	2020/11/04	<0.090		mg/L	
7037043	DBF	RPD	>C10-C16 Hydrocarbons	2020/11/04	3.0		%	40
			>C16-C21 Hydrocarbons	2020/11/04	NC		%	40
			>C21- <c32 hydrocarbons<="" td=""><td>2020/11/04</td><td>NC</td><td></td><td>%</td><td>40</td></c32>	2020/11/04	NC		%	40
7039388	SHW	Spiked Blank	Conductivity	2020/11/05		101	%	80 - 120
7039388	SHW	Method Blank	Conductivity	2020/11/05	<1.0		uS/cm	
7039388	SHW	RPD	Conductivity	2020/11/05	2.1		%	10
7039390	SHW	Spiked Blank	pH	2020/11/05		100	%	97 - 103

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7039390	SHW	RPD	рН	2020/11/05	2.1		%	N/A
N/A = No	ot Applic	able						
Duplicate	e: Paireo	l analysis of a sep	parate portion of the same sample. Used to e	evaluate the variance in the measure	ment.			
Matrix Sp	oike: A s	ample to which a	known amount of the analyte of interest ha	as been added. Used to evaluate sam	ple matrix inte	erference.		
Spiked Bl	lank: A b	lank matrix samp	le to which a known amount of the analyte,	usually from a second source, has be	en added. Use	ed to evaluate m	ethod accu	iracy.
Method I	Blank: A	blank matrix cor	ntaining all reagents used in the analytical pr	ocedure. Used to identify laboratory	contamination	า.		
Surrogate	e: A pur	e or isotopically l	abeled compound whose behavior mirrors t	he analytes of interest. Used to evalu	ate extraction	efficiency.		
•		,	the matrix spike was not calculated. The rel recovery calculation (matrix spike concentration)				nd the spike	e amount
NC (Dupli	icate RP	D): The duplicate	RPD was not calculated. The concentration i	in the sample and/or duplicate was to	o low to perm	nit a reliable RPD	calculation	n (absolute

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Elevated blank result due to lab contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

all haima

Eric Dearman, Scientific Specialist

Mike Mac Gille

Mike MacGillivray, Scientific Specialist (Inorganics)

Philippe Deven

Phil Deveau, Scientific Specialist (Organics)

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BURLAU VERITAS		Bureau Veritas Laboratories 200 Bluewater Road, Bedford, Nova Scoti	a Canada B4B	G9 Tel:(902) 420-0203	oll-free:800-5	33-6266 F	ax:(902) 420	9-8612 www	v.bvlabs.co	m						Chain	Of Custody Record	Page 1 of 1
		INVOICE TO:			Report I	formation	n				_		Project Inf	ormation			Laboratory Us	e Only
Company Name	#41009 Englo	be Corp	Com	pany Name						Que	tation #	C	201957				BV Labs Job #	Bottle Order #:
Contact Name	ACCOUNTS PA	AYABLE		act Name Ryan Pe	lerin					P.0		-				1	NC-191	
Address	97 Troop Ave		Addr	ess							ect#	2	2001756				ØS7681	798913
	Dartmouth NS										ect Name						Chain Of Custody Record	Project Manager
Phone	(902) 468-6486		Phor	e			Fax			Site	#							Keri Mackay
Email	Heather.Mason	@englobecorp.com	Ema	ryan.pell	erin@englo	becorp.	com			Sam	pled By	_					C#798913-01-01	Kent Mackay
Regulatory Cri	iteria:			Special Instructions			1		ANAL	YSIS REC	QUESTED (P	LEASE B	BE SPECIFIC	.)			Turnaround Time (TAT)	Required:
** Specify Ma	atrix: Surface/Ground/J	ippwater/Sewago/Effluent/Seawater				ved	a ns in Water			er	Non-Chlorinated					will be app Standard T Please not	Please provide advance notice fo tandard) TAT: lifed if Rush TAT is not specified): AT = 5-7 Working days for most tests :: Standard TAF for certain test such as , act your Project Manager for details.	\bowtie
- inf	``	ssue/Soil/Sludge/Metal KEPT COOL (< 10°C) FROM TIME OF SAMP Sample (Location) Identification				Field Filtered & Preserved	Lab Filluation Required RBCA Hydrocarbons in Water	As, Fe, Mn, Pb, Zn	На	Conductance - water	Atlantic VOCs - No Water					Job Spec Date Requir # of Bottles	ific Rush TAT (if applies to entire subm red: Time f Comments / Hazards / Oth	Required:
			Date Samp	Travis Sector Charles	Matrix	<u>u</u> -					₹\$					on son		
SI	D#488993	MW1	001 28/	1030 12:40	GW	X	X	x	X	х								
	D#488994	MW3	1	11:45	6	X	х	х	X	X								
	UIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	MW4		11:20			XX	x	x	x							Mul permises my F. Project out in field	d bottle filled.
	D#488996	MW6		10:45		X	x	х	х	x	х							
	D#488997	MW9		09:45		Х	x	х	х	x								
	D#488998	MW11		10:30		X	X	х	х	x								to an en
	D#488999	MW14		12:02		X	x	х	x	x								2020 OCT 29 12:1
	11111111111111111111111111111111111111	TRIP BLANK				X	x	х	x	x								
	D#489001	EQUIPMENT BLANK				X	x	х	х	x								
SI	D#489002	MW-DUP	Y		\checkmark	Х	x	х	х	x								
	UISHED BY: (Signatu	And the second se	//MM/DD)	Time			(Signature/F	Print)		D	ate: (YY/MM/	DD)	Time	# jars used and not submitted			Lab Use Only	
folom	alle 11	tolam clarke 20/10	129	-K.	Tome	Insi	m								Time Sensi	Ter	nperature (°C) on Receipt Cus	tody Seal intact on Cooler?
and the second second																6	1,45	Yes No.
FOR VIEWING	AT WWW.BVLABS.CO	N WRITING, WORK SUBMITTED ON THIS CHAIL M/TERMS-AND-CONDITIONS. RELINQUISHER TO ENSURE THE ACCURACY (CUMENT	IS ACKNOW	LEDGMENT AND AC	CEPTANCE	of our te	ERMS WHICH ARE AVAILABLE Whi	e: BV Labs Yellow: Client

Bureau Veritas Canada (2019) Inc.

Nova Scotia BON 1Z0

TEST FACILITY INFORMATION

Harris Industrial Testing Service Ltd.

1320 Ashdale Rd., South Rawdon

GENERAL TEST INFORMATION

CLIENT INFORMATION

Englobe 97 Troop Ave., Dartmouth, NS, B3B 2A7 Contact: Ryan Pellerin

PRE-TEST PARAMETERS

Pre-test Temp. (°C): 14.5

Pre-test D.O. (mg/L): 8.5

Pre-test pH: 7.3

SAMPLE INFORMATION (Client-provided data italicised)

Lab Identification #: 20-267-A Sample Name/Location: TW1 Sampling Method: Grab Sample Homogenized: No Sampler Name: A. Clarke Date & Time Sampled: May 28 2020 1030 hrs Date & Time Received: May 28 2020 1650 hrs Sample Description: Pale yellow, translucent liquid Reference Method: EPS 1/RM/13 2nd Ed. Dec. 2000 with Feb. 2016 Amendments Type: Single Concentration (Pass/Fail) Tox 9A General Test Procedures held on file Test Organism: *Oncorhynchus mykiss* (Rainbow trout)

Ph: 902 757-0232 Fax: 902 757-2839 office@harrisindustrial.info

SAMPLE PRE-TREATMENT

Mandatory 30 minute Pre-aeration: Yes Rate (ml/min/L): 6.5 ± 1 Time: 1350 hrs D.O. (mg/L): 8.6 D.O. Saturation (%): 87

Pre-aeration Continued: No Duration: -- min. @ -- hrs D.O. (mg/L): -- D.O. Saturation (%): --

Sample Conductivity (µS/cm): 537

Pre-test D.O. Saturation (%): 84

Aeration continued throughout test by airstone @ 6.5 + 1 ml/min/L

TEST CONDITIONS

Date & Time Test Initiated: May 29 2020 1420 Hrs Date & Time Test Terminated: Jun. 02 2020 1420 Hrs

pH Adjusted: No

Fish Batch #: 313 % Mortality over 7 days prior to test: 0.3

Test Volume (L): 18 Depth (cm): 31.2 Replicates: No Number of fish per vessel: 10 Loading Density (g/L): 0.35

Range (g): 0.37 - 1.04

Mean Fork Length (mm): 39 <u>+</u> 4.1 SD Range (mm): 34 – 46 Mean Wet Weight (g): 0.62 + 0.21 SD Deviations from Test Method: No Description: N/A

Temperature: 15 ± 1°C Photoperiod: 16L/8D Lux: 100 – 500 Static Test, Duration: 96 hours Control/Dilution Water: HITS Well Water

				TEST PARAMETERS					
INITIAL (0 hrs) FINAL (96 hrs)									
CONC. %	TEMP. °C	D.O. mg/L	рН	COND. μS/cm	TEMP. °C	D.O. mg/L	рН		
100	15.5	8.6	7.4	540	16.0	8.9	8.2		
Control	15.5	10.2	7.7	147	16.0	8.6	7.7		

			TES	ST RESULTS				
CONC.		TOTAL MC #				PERCENT N %	-	
%	24 hrs	48 hrs	72 hrs	96 hrs	24 hrs	48 hrs	72 hrs	96 hrs
100	0/10	0/10	0/10	0/10	0	0	0	0
Control	0/10	0/10	0/10	0/10	0	0	0	0
		TOTAL S #				PERCENT %		
CONC. %	24 hrs	48 hrs	72 hrs	96 hrs	24 hrs	48 hrs	。 72 hrs	96 hrs
% 100	0/10	48 ms 0/10	0/10	0/10	0	40 11 3	0	0
Control	0/10	0/10	0/10	0/10	0	0	0	0

96 HR ACUTE LETHALITY RESULTS

TOTAL MORTALITY: 0 % Result: Pass REFERENCE TOXICANT DATA Performed under laboratory conditions as above, no deviations Batch: 313 Test Date: May 26 – 30 2020 Reference Substance: Phenol LC₅₀ Value: 12.4 mg/L 95% Confidence Limits: 11.2 – 13.7 mg/L Historical Mean: 11.1 mg/L Warning Limits <u>+</u> 2 SD: 8.20 – 15.1 mg/L

COMMENTS

Test meets all conditions for test validity.

TEST AUTHORIZATION AND VERIFICATION

Analyst(s): K. Marks & J. Fraser

Date: Jun. 02 2020

Verified by:	D. Robinson
Signed:	NR

REFERENCES

Tidepool Scientific Software, 2001 - 2014. Comprehensive Environmental Toxicity Information System – CETIS v1.8.7.20

Accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA Inc.). The test included in this report is within the scope of this accreditation.

Results apply to the sample as received. Results reported apply only to the sample tested. Results are based on nominal concentrations.

Nova Scotia BON 1Z0

TEST FACILITY INFORMATION

Harris Industrial Testing Service Ltd.

1320 Ashdale Rd., South Rawdon

GENERAL TEST INFORMATION

CLIENT INFORMATION

Englobe 97 Troop Ave., Dartmouth, NS, B3B 2A7 Contact: Ryan Pellerin

PRE-TEST PARAMETERS

Pre-test Temp. (°C): 14.0

Pre-test D.O. (mg/L): 9.6

Pre-test pH: 7.2

Pre-test D.O. Saturation (%): 94

in Ph: 902 757-0232 Fax: 902 757-2839 office@harrisindustrial.info

SAMPLE INFORMATION (Client-provided data italicised)

Lab Identification #: 20-267-B Sample Name/Location: TW3 Sampling Method: Grab Sample Homogenized: No Sampler Name: A. Clarke Date & Time Sampled: May 28 2020 1345 hrs Date & Time Received: May 28 2020 1650 hrs Sample Description: Yellow, opaque liquid Reference Method: EPS 1/RM/13 2nd Ed. Dec. 2000 with Feb. 2016 Amendments Type: Single Concentration (Pass/Fail) Tox 9A General Test Procedures held on file Test Organism: *Oncorhynchus mykiss* (Rainbow trout)

SAMPLE PRE-TREATMENT

Mandatory 30 minute Pre-aeration: Yes Rate (ml/min/L): 6.5 ± 1 Time: 1350 hrs D.O. (mg/L): 9.7 D.O. Saturation (%): 97

Pre-aeration Continued: No Duration: -- min. @ -- hrs D.O. (mg/L): -- D.O. Saturation (%): --

Sample Conductivity (μ S/cm): 1031

Aeration continued throughout test by airstone @ 6.5 + 1 ml/min/L

TEST CONDITIONS

Date & Time Test Initiated: May 29 2020 1420 Hrs Date & Time Test Terminated: Jun. 02 2020 1420 Hrs

pH Adjusted: No

Fish Batch #: 313 % Mortality over 7 days prior to test: 0.3

Test Volume (L): 18 Depth (cm): 31.2 Replicates: No Number of fish per vessel: 10 Loading Density (g/L): 0.38

Range (g): 0.42 - 0.95

Mean Fork Length (mm): 37 <u>+</u> 4.3 SD Range (mm): 30 – 44 Mean Wet Weight (g): 0.69 + 0.20 SD Deviations from Test Method: No Description: N/A

Temperature: 15 ± 1°C Photoperiod: 16L/8D Lux: 100 – 500 Static Test, Duration: 96 hours Control/Dilution Water: HITS Well Water

				TEST PARAMETERS						
	INITIAL (0 hrs) FINAL (96 hrs)									
CONC. %	TEMP. °C	D.O. mg/L	рН	COND. μS/cm	TEMP. °C	D.O. mg/L	рН			
100	15.5	9.7	7.3	1044	16.0	8.8	8.1			
Control	15.5	10.1	7.7	153	16.0	8.5	7.7			

			TES	ST RESULTS				
CONC.		TOTAL MC #				PERCENT N %		
%	24 hrs	48 hrs	72 hrs	96 hrs	24 hrs	48 hrs	72 hrs	96 hrs
100	0/10	0/10	0/10	0/10	0	0	0	0
Control	0/10	0/10	0/10	0/10	0	0	0	0
		TOTAL S #				PERCENT %		
CONC.								
%	24 hrs	48 hrs	72 hrs	96 hrs	24 hrs	48 hrs	72 hrs	96 hrs
100	0/10	0/10	0/10	0/10	0	0	0	0
Control	0/10	0/10	0/10	0/10	0	0	0	0

96 HR ACUTE LETHALITY RESULTS

TOTAL MORTALITY: 0 % Result: Pass REFERENCE TOXICANT DATA Performed under laboratory conditions as above, no deviations Batch: 313 Test Date: May 26 – 30 2020 Reference Substance: Phenol LC₅₀ Value: 12.4 mg/L 95% Confidence Limits: 11.2 – 13.7 mg/L Historical Mean: 11.1 mg/L Warning Limits <u>+</u> 2 SD: 8.20 – 15.1 mg/L

COMMENTS

Test meets all conditions for test validity.

TEST AUTHORIZATION AND VERIFICATION

Analyst(s): K. Marks & J. Fraser

Date: Jun. 02 2020

Verified by: D. Robinson Signed:

REFERENCES

Tidepool Scientific Software, 2001 - 2014. Comprehensive Environmental Toxicity Information System – CETIS v1.8.7.20

Accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA Inc.). The test included in this report is within the scope of this accreditation.

Results apply to the sample as received. Results reported apply only to the sample tested. Results are based on nominal concentrations.

TEST FACILITY INFORMATION

GENERAL TEST INFORMATION

CLIENT INFORMATION

Englobe 97 Troop Ave., Dartmouth, NS, B3B 2A7 Contact: Ryan Pellerin

PRE-TEST PARAMETERS

Pre-test Temp. (°C): 15.5

Pre-test D.O. (mg/L): 7.2

Pre-test pH: 7.6

Pre-test D.O. Saturation (%): 73

Harris Industrial Testing Service Ltd. 1320 Ashdale Rd., South Rawdon Nova Scotia BON 120 Ph: 902 757-0232 Fax: 902 757-2839 office@harrisindustrial.info

SAMPLE INFORMATION (Client-provided data italicised)

Lab Identification #: 20-267-C Sample Name/Location: TW4 EPS Sampling Method: Grab Sample Homogenized: No Sampler Name: A. Clarke Date & Time Sampled: May 28 2020 1430 hrs Date & Time Received: May 28 2020 1650 hrs Sample Description: Pale yellow, transparent liquid with sediment

Reference Method: EPS 1/RM/13 2nd Ed. Dec. 2000 with Feb. 2016 Amendments Type: Single Concentration (Pass/Fail) Tox 9A General Test Procedures held on file Test Organism: *Oncorhynchus mykiss* (Rainbow trout)

SAMPLE PRE-TREATMENT

Mandatory 30 minute Pre-aeration: Yes Rate (ml/min/L): 6.5 ± 1 Time: 1350 hrs D.O. (mg/L): 7.4 D.O. Saturation (%): 74

Pre-aeration Continued: No Duration: -- min. @ -- hrs D.O. (mg/L): -- D.O. Saturation (%): --

Sample Conductivity (µS/cm): 723

Aeration continued throughout test by airstone @ 6.5 + 1 ml/min/L

TEST CONDITIONS

Date & Time Test Initiated: May 29 2020 1420 Hrs Date & Time Test Terminated: Jun. 02 2020 1420 Hrs

pH Adjusted: No

Fish Batch #: 313 % Mortality over 7 days prior to test: 0.3

Test Volume (L): 16 Depth (cm): 28.3 Replicates: No Number of fish per vessel: 10 Loading Density (g/L): 0.33

Range (g): 0.22 - 0.88

Mean Fork Length (mm): 35 <u>+</u> 5.3 SD Range (mm): 27 – 43 Mean Wet Weight (g): 0.53 <u>+</u> 0.26 SD Deviations from Test Method: No Description: N/A

Temperature: 15 ± 1°C Photoperiod: 16L/8D Lux: 100 – 500 Static Test, Duration: 96 hours Control/Dilution Water: HITS Well Water

				TEST PARAMETERS					
INITIAL (0 hrs) FINAL (96 hrs)									
CONC. %	TEMP. °C	D.O. mg/L	рН	COND. μS/cm	TEMP. °C	D.O. mg/L	рН		
100	15.5	7.4	7.6	711	16.0	8.3	8.1		
Control	16.0	9.8	7.9	154	16.0	8.8	7.8		

			TES	ST RESULTS				
CONC.		TOTAL MC #				PERCENT N %		
%	24 hrs	48 hrs	72 hrs	96 hrs	24 hrs	48 hrs	72 hrs	96 hrs
100	0/10	0/10	0/10	0/10	0	0	0	0
Control	0/10	0/10	0/10	0/10	0	0	0	0
		TOTAL S				PERCEN		
CONC.		#				9		
%	24 hrs	48 hrs	72 hrs	96 hrs	24 hrs	48 hrs	72 hrs	96 hrs
100	0/10	0/10	0/10	0/10	0	0	0	0
Control	0/10	0/10	0/10	0/10	0	0	0	0

96 HR ACUTE LETHALITY RESULTS

TOTAL MORTALITY: 0 % Result: Pass REFERENCE TOXICANT DATA Performed under laboratory conditions as above, no deviations Batch: 313 Test Date: May 26 – 30 2020 Reference Substance: Phenol LC₅₀ Value: 12.4 mg/L 95% Confidence Limits: 11.2 – 13.7 mg/L Historical Mean: 11.1 mg/L Warning Limits <u>+</u> 2 SD: 8.20 – 15.1 mg/L

COMMENTS

Test meets all conditions for test validity.

TEST AUTHORIZATION AND VERIFICATION

Analyst(s): K. Marks & J. Fraser

Date: Jun. 02 2020

Verified by:	D. Robinson
Signed:	X

REFERENCES

Tidepool Scientific Software, 2001 - 2014. Comprehensive Environmental Toxicity Information System – CETIS v1.8.7.20

Accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA Inc.). The test included in this report is within the scope of this accreditation.

Results apply to the sample as received. Results reported apply only to the sample tested. Results are based on nominal concentrations.

www.englobecorp.com